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Abstract— Distributed simulation has emerged as an important
instrument for studying large-scale complex systems. Such systems
inherently consist of a large number of components, which operate
in a large shared state space interacting with it in highly dynamic
and unpredictable ways. Optimising access to the enormous
shared data is crucial for achieving efficient simulation executions.
This effort involves two major issues, data distribution and data
accessing.

In this paper, we discuss the issues of modelling shared data. We
have developed a framework for distributed simulation of MAS,
which uses a hierarchical infrastructure to manage the shared data
and facilitate interoperation amongst agent simulation models.
Our framework aims to reduce the cost of accessing shared data by
dynamically redistributing shared data in the infrastructure
according to the access pattern of the agent simulation models.

Data accesses may take two forms: locating data according to a
set of attribute value ranges (Range query) locating a particular
state variable from the given identifier (ID query and update).
This paper proposes two alternative routing approaches, namely
the address-based approach, which locates data according to their
address information, and the range-based approach, whose
operation is based on looking up attribute value range information
along the paths to the destinations. The two algorithms are
discussed an analysed in the context of PDES-MAS, a framework
for the distributed simulation of multi-agent systems, which uses a
hierarchical infrastructure to manage the shared state space. The
paper introduces a generic meta-simulation framework which is
used to perform a quantitative comparative analysis of the
proposed algorithms under various circumstances.

Index Terms— Complex systems, Distributed Simulation, Data
Distribution, Data management

I. INTRODUCTION

The last decade has witnessed an explosion of interest in
complex systems, systems which involve dynamic and
unpredictable interactions between large numbers of
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components including software, hardware devices (such as
sensors), and social entities (people or collective bodies).
Examples of such systems include from traditional embedded
systems, to systems controlling critical infrastructures, such as
defence, energy, health, transport and telecommunications, to
biological systems, to business applications with
decision-making capabilities, to social systems and services,
such as e-government, e-learning etc. The complexity of such
systems renders simulation (agent-based simulation in
particular [5]), the only viable method to study their properties
and analyse their emergent behaviour.

The application of simulation to ever more complex
problems has placed it in the highly computation intensive
world with computational requirements far exceeding the
capabilities of conventional sequential computer systems. As a
result, distributed simulation approaches are increasingly used
in the development and analysis of complex systems. Amongst
the most influential of these approaches, the Logical Process
Paradigm seeks to divide the simulation model into a network of
concurrent Logical Processes (LPs), each of which models some
object(s) or process(es) in the simulated system. Each LP
maintains and processes a portion of the state space of the
system and state changes are modelled as time-stamped events
in the simulation. In conventional distributed simulations, the
shared state is typically small and the processes interact with
each other in a small number of well-defined ways. The
topology of the simulation is determined by the topology of the
simulated system and its decomposition into processes, and is
largely static. However, in the case of systems, which operate in
complex environments and interact with it in highly dynamic
and unpredictable patterns (such as multi-agent systems,
battlefield simulations, ecological systems, games, autonomic
systems etc), it is often difficult to determine an appropriate
simulation topology a priori. In such systems there is a very
large set of shared state variables which could, in principle, be
accessed or updated by the processes in the model [28].
Encapsulating the shared state in a single process (e.g. via some
centralised scheme) introduces a bottleneck, while distributing
it all across the LPs (decentralised, event driven scheme) will
typically result in frequent all-to-all communication and
broadcasting.

In [17] we have proposed an approach to manage the shared
data in distributed simulations of multi-agent systems (MAS).
The approach is based on the notion of Spheres of Influence
(Sol)} and uses a hierarchical simulation infrastructure to



dynamically decompose and distribute the shared state. It has
been realised in the context of a framework for the distributed
simulation of multi-agent systems (PDES-MAS).

Shared data management in distributed simulations needs to
address two problems, namely data distribution and data
accessing. In an effort to address data distribution issue and
provide a generic approach for dynamic load management and
interest management in distributed simulation of multi-agent
system, in [17][18][29][30] we have introduced the notion of
Spheres of Influence (Sol). In this paper, we describe an
adaptive data distribution scheme, where the shared data is
dynamically redistributed to meet the ideal Sol. The data
redistribution algorithm is detailed in [20]. This paper also
discusses the issues of modelling shared state and presents
alternative modelling schemes. We analyse the tradeoffs of
adopting alternative modelling schemes on the execution of
distributed simulation of MAS.

Data accesses target both individual data items (ID queries)
and selected data items overlapping given query windows
(Range queries). The issue becomes more complicated when the
value and the physical distribution of data items both are
dynamic. Further problems arise when query sources are
changing their positions. This paper proposes two candidate
algorithms for data accessing in the context of the PDES-MAS
framework, namely the address-based and the range-based
routing.

The rest of this paper is organized as follows: DS-MAS
framework and Data distribution in DS-MAS are introduced in
Section II. Shared state modelling is discussed in Section III.
Section I'V covers the alternative solutions to data accessing and
gives qualitative analysis on the advantages and drawbacks of
both solutions. Section V presents the benchmark experiments
for studying the dynamics of the routing solutions. Related work
and background of this study are briefed in Section VI. In
Section VII, we conclude with a summary and proposals on
future works.

II. DS-MAS FRAMEWORK AND DATA DISTRIBUTION

We have developed a framework for distributed simulation of
multi-agent systems (DS-MAS). The framework models a
multi-agent system as a network of Logical Processes (LPs). In
particular, each agent is modelled as an Agent Logical Process
(ALP) [16]. An ALP has both private state and shared state. The
private state are maintained within the ALP, while the shared
state can be accessed (read or updated) by other LPs. State
changing of an ALP that has impact on LPs’ state is called an
external event of the ALP, and this is represented by an
operation on the shared state. The shared state is modelled as a
set of Shared State Variables (SSVs). External events are
modelled as timestamped messages being exchanged amongst
LPs. The shared state and external events are the data managed
by the framework.

In the DS-MAS framework interoperations between ALPs
are facilitated by a hierarchical simulation infrastructure. The

infrastructure is constituted by a network of Communication
Logical Processes (CLPs), which is the manager of the shared
data and provides common services to the ALPs. The services
provided by the CLP tree include: (1) facilitating the
construction of the distributed simulation; (2) clustering and
interoperating the ALPs; (3) managing shared data and
balancing load incurred by accessing the shared state; and (4)
facilitating synchronization of the ALPs. Figure 2 illustrates the
relationship between an ALP and the CLP tree. Operation of the
CLP tree remains transparent to the ALPs during the simulation.
The DS-MAS framework provides a software library to the
ALPs to interact with the CLP tree through the two interface
modules, namely a SimulationAmbassador and
AgentAmbassador module. An ALP issues requests to access
shared state variables through the SimulationAmassador
module which forwards the requests to the server CLP. If the
required SSV is not held locally, the server CLP passes the
request to its parent CLP to deal with the request. The return
data and control messages (e.g. rollback) are conveyed to the
ALP via its AgentAmbassador module.

Figure 2 gives a schematic view of a CLP, which interacts
with other LPs via ports. Ports link the individual LPs together
to form the overall DS-MAS simulation system. In this paper,
we name the port of a CLP, from which a request on accessing
SSV is received, the incoming port. Each CLP is also a router
responsible for forwarding an access request to the destination
CLP(s) that host the target data. If this CLP needs to forward a
request out via other ports, those ports are called outgoing ports.
The port is specially designed to maintain the distribution of the
values of SSVs in the value space’ classified by the types of
SSVs (also see Section IIILA). This paper uses the term
“attribute value range” to denote a certain range of the values of
a set of SSVs associated with a particular attribute (or a set of
attributes). The attribute value range can be described as simple
as [Min, Max] or a more detailed list or other data structure with
different “resolutions”. The “extent” covered by the attribute
value range may vary with different routing algorithms. The
distribution concerns SSVs in the local CLP and/or SSVs in
remote CLPs, for instance the overall system beyond a port or
only the direct neighbours (parent and/or children nodes if any)
to the CLP from this port. The distribution of the values gives a
panorama of the status of SSVs in the system. No matter what
resolution and extent are chosen for an attribute value range, it
should always correctly reflect the status of SSVs and can be
refreshed once the status changes.

In the context of DS-MAS framework, the Sofl of an event is
defined as the set of shared state read or updated as a
consequence of that event [18], which describes the immediate
effect of an event. The Sol of an agent simulation model over a
time interval is the union of the spheres of influence for each
event generated by the agent simulation model within the
interval. Intersecting the spheres for each event generated by the

! For example, we define “x-position” in an extent [0, 100]. Given 100 SSVs
of x-position, the values of these SSVs may distribute evenly from 0 to 99, such
as (0, 1, ..., 99), or concentrate on [50, 51].



agent simulation model gives a partial order over sets of shared
state over the interval, which denotes the frequency with which
these portions of shared state been accessed. The Sol describe
the access pattern of the simulation models on the shared state in
a given time interval. In more recent work we have realised this
approach in the DS-MAS framework [18].

Message Types :

1. Request/returned event data
for accessing shared states

2. Load balancing messages
3. Control messages
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Fig. 3. Tllustrating the DS-MAS framework

In [20], we propose that the simulation initially starts with a
single centralised CLP marked as CLP, (see Figure 3). As the
simulation execution proceeds, CLP, may become a bottleneck
due to the increasing load of managing SSVs. When this

TABLE I
ILLUSTRATING OBJECTS AND SHARED STATE VARIABLE

Object . Object Shared State
Cliss Attribute ID Insiance Variable
Name “Tile” “X-pos” of  A“Tile” with  The “X-pos”
the “Tile ” name of object
class “Tile123” “tile123” at
time T.
Mapping to  Class Member An instance The member
C++ “tile” variable of “tile” variable
concepts “X-pos” in (Tilel123 = “X-pos” of
class “tile” new tile()) Tilel23
(tile::X-pos) (Tile123->X-
pos)
Representat 10 101 3000 <10, Tile123,
ion in 101, value of
programmi X-pos, T >
ng

happens, CLP, is split into multiple CLPs, with each new CLP
maintaining a subset of the shared state which is most closely
associated (in terms of their spheres of influence) with the ALPs
which are below it in the tree. This reduces the load on
individual CLPs, and such “decomposition” of congested CLPs
naturally leads to the construction of a CLP tree (Figure 3(B)).
As the access patterns on the shared state change, so does the
configuration of the tree and the distribution of state (i.e., its
allocation to CLPs) to reflect the logical topology of the model.

Redistribution can be achieved in a number of ways, such as
(1) Moving/merging/splitting CLPs, (2) Moving ALPs and (3)
Moving state between CLPs. Considering the design complexity
and the cost of manipulating LPs at runtime, in this project we
choose to use a fixed tree of CLPs and move SSVs through the
tree to achieve redistribution. A simple way to construct a fixed
tree is using binary tree structure as it eases searching and
manipulating data (Figure 3(C)). Although a CLP tree’s
topology is fixed, its scale is determined by the number of ALPs
involved in the simulation. The CLP trees discussed in this
paper are binary trees, thus it is straightforward for us to specify
a permanent address to each CLP. Each ALP links to a leaf CLP
directly, this leaf CLP is called the ALP’s server CLP while the
ALP is named a client ALP to this sever CLP.

III. MODELLING SHARED STATE

Modelling shared state is an important task for manipulating
shared data in distributed environment. In the DS-MAS
framework, there are four basic notations related to share state:
Object Class, Object Instance, Attribute ID and Shared State
Variable (SSV). An Object Class defines the conceptual
representation of a collection of shared data with same
properties. Each object class has the same semantics and
common meaning crossing the distributed system. An Attribute
ID denotes a characteristic of objects with a particular type,
which must be associated with a certain object class. An Object
Instance denotes a unique instantiation of an object class, which
is created by some ALPs. Object instances can be abbreviated as
“objects” in this paper. The attribute values of an object
represent the state of this object.



For those objects that can be globally accessed by ALPs, an
attribute (or a certain combination of multiple attributes) of each
object forms an SSV in the system. The attribute(s) are named
as the type of this SSV. An SSV is said to have a simple type if it
represents a single attribute of an object or have a composite
type in case it describes multiple attributes of an object. An SSV
must be associated with a particular object. To precisely
describe an SSV, an SSV data item should contain: object class,
object ID, attribute ID, value and the timestamp(s) at which it
has been updated. Table 1 illustrates the relationship amongst
the four terms using the “TileWorld” simulation as an example
[23][31]. The last row in Figure 4 lists representations of the
type, attribute, ID of an object and the ID of an SSV associated
with the object®.

Object Type Attributes Handles | Object Type Atributes Handles

1
Tile 10 : Entity 10
X-pos 101 : K-pos 101
Y-pos 102 : Y-pos 102
1
Color 103 : —>Tile 20
Color 203
Hole I
20 1
X-pos 201 I —»Hole 30
02 H Visibility 308
Y-pos |
1
Visibility ~ 203 1
(A) (8)

Fig. 4. An Example of Defining Object Classes and Attributes

Figure 4 depicts two examples of defining object classes
which adopt a similar scheme to Federation Object Model [20].
Figure 4(A) gives an example of defining two element classes,
which means their associated attributes are totally independent;
although their attributes are specified the same names or stands
for the same abstractions in the physical system. There are no
common attributes between element object classes.

As for common attributes of different object classes, we may
adopt a scheme as indicated in Figure 4(B). Here we assume that
the modeller intends to make no difference between object types
for those attributes. Object class “Tile” and “Hole” (sub-types)
can be derived from the same base class “Entity” (super-type).
By their mature, the common attributes “X-pos” and “Y-pos”
(from the perspective of object class Tile or Hole) belong to the
objects of “Entity”. Therefore, the two attributes are assigned
the same IDs for all sub-type objects of “Entity”. However, it is
impossible to determine whether the attribute ID 101 belongs to
a “Tile” or a “Hole”. Sometimes the common attribute will be
used in performing range queries. This issue will be discussed
later in Section III.C and IV.D.2.

A. Operations on Shared State

ALPs can perform a number of operations on the shared state
[20]:
1) Requesting the value(s) of one or more attributes with a
given timestamp.

2 The scheme is similar to the RTI “handles” defined in the HLA
specification. The integer representations remain unchanged within a
simulation session and are unique in all ALPs and CLPs. From the value of such
an integer, we can derive the entity/abstracts it represents. For example, an
attribute “101” means the attribute “X-pos” of “Tile”. Similarly, the SSV ID
refers to an attribute (or a set of attributes) of a unique object.

2) Updating the value(s) of one or more attributes at a
designated simulation time.

3) Adding/Removing one or more attributes from a given
timestamp.

Consequently, there exists several different categories of
operations on SSVs by both ALPs and CLPs, those are (1) query
(read and write (update)), (2) creation and deletion, as well as
(3) migration. An LP generates external events using this
method.

ALPs are allowed to query SSVs with complex criteria,
which may consist of a set of conditions with versatile logics.
For example, an agent issues a query like this: the colour of all
tiles within the area (4 < X-pos < 6) and (5 < Y-pos<7) OR the
area (X-pos < 3) and (Y-pos = 4) AND the (X-pos and Y-pos) of
“Hole764”. Nevertheless, a very complex query can always be
decomposed into atomic queries, and the returned data in each
atomic query will be consolidated and delivered to the ALP via
the AgentAmbassador according to the logical expression.
There are two types of atomic queries, namely Range Query and
Shared State Variable Query (SSV Query or ID Query).

A range query requests a set of SSVs of the given type and
with value within the given attribute value range. Attribute value
range is often used in range queries or describing the
distribution of SSVs’ value in the system (see Section II). An
agent needs to explore some portion of the environment of its
interest, which is often independent from the priori knowledge
about the environment. Range queries are initiated to meet the
requirement. The format of a range query is written as
<Attribute ID, Attribute value range, Timestamp>. Using the
object model defined in Figure 2(B), we can write a range query
as: Query (101, [0, 3], 300). This expression means that an ALP
is requesting the X-pos value of all entities (tiles and holes)
located at left side of X-pos 3 at time 300. The ALP will be
returned with a set of SSVs in format: [<SSV IDI, value 1>, ...,
<SSV IDn, value n>]. The common attributes are useful in this
case: an ALP can retrieve whatever SSVs blindly regardless of
what sub-type those SSVs belong to.

In contrast, an SSV Query accesses an individual data item
(SSV) in the environment which have already been known to the
agent. The SSV query targets on a single SSV according to its
specified ID. Thus, SSV query is also called ID query, including
SSV Read and SSV Update. The SSV read has a simpler format:
<SSV ID, Timestamp>, and a successful read will return a
single SSV: <SSV IDx, Value x >. For example, an SSV read,
Read (3000101, 500), means an ALP needs to know the value of
tile3000’s X-pos at time 500 (see Figure 4). An SSV Update
writes new value and the associated timestamp to a designated
SSV, for example: Update (3000101, 7, 501).

Only when an ALP needs, can an object (and SSVs
associated with it) be created and deleted. Creation and deletion
of SSVs are performed through CLPs eventually. SSVs can also
be moved, whether moving an SSV and to where should it be
moved totally depend on the load management mechanism [20].



B. Dynamic Distribution of Shared State Variables

ALPx ALPy

Data Distribution in the
Initial Scenario
(A)

Access SSVi
very frequently
(B)

Access SSV2
very frequently

SSVi: X-pos
® of Tile123

Fig. 5. Moving Shared State Variable for Load Management

SSVa: Visibility
of Hole34

The hierarchical infrastructure clusters ALPs and shared state
according to the ALPs’ Sol. As discussed in [20], the DS-MAS
framework enables load management via approximating the
ideal Sol. In this project, the term load management is slightly
different from that defined in the context of conventional
distributed systems, which does not simply mean migrating load
from congested host to another idle one to balance the
utilization of system resource. In DS-MAS, load management
focuses on optimisation of the cost of managing shared state
according to the statistics of data accessing. The “load” includes
the cost of the communication and computation for accessing
and managing shared state. The definition of access cost and the
SSV migration algorithm are detailed in [20]. As a consequence
of load management, the CLPs will gradually move the
corresponding SSVs closer to those client ALPs which access
them the most frequently. Figure 5 illustrates this SSV
migration procedure and its ultimate effect.

Figure 5(A) gives the initial scenario of a DS-MAS
simulation, in which shared state variable SSV; (“X-pos” of the
object “Tilel23”) and SSV, (“Visibility” of the object “Hole34”)
are distributed as in the figure. At some stage, ALP, is interested
in $SV; and starts to access SSV; frequently, so does ALP, for
SSV,. Here we assume other ALPs access these two SSVs rarely
comparing to ALP, and ALP,. As controlled by the load
management algorithm, SSV; and SSV, should be gradually
moved in the tree towards ALP,’s server CLP and ALP,’s server
CLP respectively. With this procedure continues, eventually the
two SSVs will be redistributed as in Figure 5(B).

C. Tradeoffs in Defining Shared State Variables

An SSV may represent an attribute or a set of attributes of an
object. It is simulation modellers’ responsibility to decide how
to define SSVs, whether assigning a simple type or a composite
type to it. For example, a modeller can define the X-position or
Y-position of tiles as two different simple SSV types.
Alternatively, the modeller may choose a combination of the
two attributes <X-pos, Y-pos> of tiles as a composite SSV type.
The two different schemes of modelling SSVs make significant
difference in distributing SSVs.

ALPx ALPy ALPx ALPy
Access X-pos of Access Y-pos of Access X-pos of Access Y-pos of
Tile123 Tile123 Tile123 Tile123
very frequently very frequently very frequently very frequently
(A) (B)
SSV1: X-pos SSV2: Y-pos ___ > Moving SSV3: <X-pos, Y-pos>of ..y Accessing
of Tile123 of Tile123 ssv Tile123 ssv

Fig. 6. Data Re-distribution for Defining SSVs in Single Type and Composite
Type

Asillustrated in Figure 6, ALP, and ALP, are interested in the
attributes X-pos and Y-pos of object Tilel23 respectively. If
SSVs are defined as single types, there will be two individual
SSVs (§SV; and SSV>) representing the two attributes of Tilel23
(Figure 6(A)). With the advancing of simulation, SSV; and SSV,
will be moved forward to the server CLPs of ALP, and ALP,. If
a composite type <X-pos, Y-pos> is used to denote the two
attributes of tile objects, there will be a single SSV for the X-pos
and Y-pos of Tilel23. In this case, ALP, and ALP, are interested
in different portions of the same SSV (SSV;). Suppose that the
two LPs access SSV; in similar frequencies, SSV; will be moved
to a CLP at the “middle point” between them.

Modelling SSVs with what type also affects data accessing in
both design complexity and system performance. ALPs may
issue queries with a set of attribute value ranges. For example,
an ALP requests the information of the tiles within the area
(4 £ X-pos £ 6) AND (5 < Y-pos < 7). When adopting the
simple SSV type scheme, the server CLP has to search all the
tile objects meeting the conditions on X-pos then on Y-pos.
Subsequently, the ALP will be returned with the intersection of
the results obtained in the two searches. In this case a lot of
redundant data are accessed and transmitted unnecessarily. If
SSVs are defined using the composite type <X-pos, Y-pos>, the
SSVs meeting both conditions can be identified in a single
search. Comparing to the simple type scheme, the composite
type scheme can significantly reduce the cost of searching
multiple attributes of the same object type.

Undoubtedly, defining SSVs in different combinations of the
same set of attributes will also have impact on data
management. Both SSV modelling schemes have their
advantages and drawbacks, and we leave the options to the
modellers.

IV. DATA ACCESSING IN DS-MAS BASED DISTRIBUTED
SIMULATIONS

Another key issue in data management is to provide efficient
data accessing. The first crucial task of any operation on SSVs is
to locate the target(s). Routing solutions are needed for
ALPs/CLPs to locate (1) SSVs according to the attribute value
ranges (range query) and/or (2) a particular SSV from the given
ID (other operations including ID query and update). The two



types of locating significantly differ from each other. The
former one searches for a group of SSVs based on the specified
common attributes and constraints, while the targets are
versatile and dynamic in each query. This task is similar to
multicast on dynamic group. In contrast, the latter one accesses
an SSV from its ID. It is specific and static, basically a unicast
on mobile destination.

In order to minimise the computational and communicational
overhead, which is also the goal for load management,
following principles should be conformed to in choosing the
routing solution:

1) To avoid unnecessary data transmission and complex
searching as much as possible.

2) To minimize the number of times of initiating global
communication or computation in performing frequent
executions.

A. Assumptions

SSV queries and updates are the most basic operations issued
by the ALPs. SSVs can be moved between CLPs on the
initiative of load management, and such move is controlled by
the load management mechanism according to the statistics of a
large number of SSV queries/updates. ALPs may create objects
and delete them when necessary, and these operations are once
off for each object (or SSV) and can be treated as transient
operations. Thus in general, the frequencies of these operations
on SSVs follow the order: Query/Update >> SSV Move, Object
Creation/Deletion.

For query on SSVs, the data being transmitted include (1)
searching criteria information contained in a query, (2)
update/returned value of an SSV or (3) returned values of a set
of SSVs. It is likely that the payload sizes of these data items
comply with the sequence: Values of SSV set >> Update/Value
of an SSV, Attribute value range Query > SSV ID Query.

Locating an SSV includes two element executions: (1)
forwarding the request amongst CLPs and (2) looking up the
SSV inside a CLP. The inter-CLPs transmission overhead is
significantly higher than the overhead of performing simple
local computation: such as searching within a finite list. It is
hard to reduce the transmission overhead with existing
networking technologies, which increases linearly with the
number of hops to be traversed. On the contrary, local
computation is relatively easier to be optimized, for example
using advanced algorithms or high performance machines.

Derived from above assumptions, the following specific
factors should be treated with high priority when making
tradeoffs in designing a routing algorithm:

1) Optimization of the query/update procedures.

2) Minimisation of the hops to be traversed in frequent data
transmissions.

3) Preference on locally searching information for SSVs
rather than resort to remote nodes.

4) Reduction of the overhead in transmitting the values of
SSV sets.

Undoubtedly, any routing solution should guarantee that it
will never miss any target in the system meeting the query

condition. All efforts to explore accurate routing
solutions/reduce redundancy of routing should be based on the
premise of that.

B. Routing in the Communication Logical Process Tree

Routing accesses to SSVs can be performed via either their
location information in the CLP tree or the attribute value range
information maintained at the ports of the CLPs [16]. SSVs may
be moved between CLPs, but there are no multiple copies of a
single SSV existing in the overall system. The status of an SSV
can be altered due to updating and load management (except
object deletion). Update may change the value of the SSV which
directly affects the corresponding attribute value range. Load
management may induce the migration of the SSV around the
CLP tree. Thus, the location of this SSV in the system changes
and so does the value ranges at related ports. This immediately
influences the ID query on this SSV and possibly the range
query.

To ease locating SSVs in the CLP tree, it is necessary to code’
the tree to identify the CLPs. The address of an SSV is defined
as the code of CLP at which it is maintained, the CLP is named
as the host CLP of this SSV, and this SSV is called a local SSV
of this CLP. When forwarding data, a CLP can decide from
which port to push the access request to the destination CLP.

The fixed architecture of a CLP trees determines that: (1) an
SSV can only be moved from a CLP to its direct neighbours, and
(2) between any ALP and CLP, there exists only one exclusive
path. Once the target SSVs are located, the returned data need to
be simply conveyed to along the path (the query just traversed)
in a reverse direction to the source ALP (always linking to the
leaf CLP nodes).

C. Address-based Routing

Fragment of a CLP’s record on the

Value range of SSVs attribute ranges about its neighbours

(attribute101)

SSV Value

ssv:
2000101

Ssv:
3000101
4400101

CLP2

X-pos of tiles
(101)

CLPs a

ALPx

$ SSVs |
3000101

SSVit
4400101

Fig. 7. lllustrating a Scheme for Address-based Routing

Address-based routing searches for an SSV (or SSVs)
according to its (their) addresses. Figure 8 illustrates an
address-based routing scheme, which binds the ID of an SSV to
its address. Each server CLP maintains a routing table
containing the addresses of SSVs that have been accessed by
any client ALP. The routing table has a hierarchical format

3 We do not prefer any particular coding scheme, as long as the code it
specifies to each CLP is unique and remains consistent in the simulation.



using attribute IDs as indexes. From a particular object
attribute’s perspective, the table maintains the addresses of
CLPs hosting the same type of SSV. The SSV IDs of this type
are recorded under the host CLP entry. The direct neighbours of
a CLP keep the attribute value ranges of SSVs on the CLP. Each
port of a CLP also stores the attribute value range information
on the direct neighbour CLP beyond that port. This information
is obtained and refreshed when the updates on those SSVs
occur. For example in Figure 7, there are several SSVs
representing the X-pos of tile objects in the CLP tree, and two of
them are maintained by CLP;,
1) Range Query with Address-based Routing

The information in a range query consists of two parts, i.e. the
attribute ID(s) and the query window on attribute value. When
an LP issues a range query, the server CLP is responsible for
routing the query to the destinations. Figure 8 depicts the
routing algorithm. First, the attribute ID will be used to check
through the routing table (see Figure 7). In the case that the SSV
type (see Section III) is absent in the table, the server CLP has to
initiate a global search on other server CLPs to collect
information about the SSVs of the queried type, such as SSV
IDs and their addresses. Subsequently, the server CLP may
establish a new entry about the SSV type.
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The server CLP in the searching path

Destination host CLP

Resolve the Check the range in the Look for the SSVs
addresses of a . attribute query against meeting the
particular type of the stored information Ve requirements on
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Fig. 8. Address-based Routing for Range Query
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If the entry is found, the addresses of the host CLPs can be
resolved and the server CLP “multicast” the query to the
destinations. Prior to entering inte each individual host CLP, the
algorithm needs to check the atiribute value range information
maintained in the corresponding port of the neighbour CLPs.
Only when the query window overlaps with the stored attribute
value range will this host CLP be searched. The results will be
returned to the server CLP and passed to the client LP
eventually.

2) Shared State Variable ({D) Query

The algorithm for an ID query is straightforward. When an
ALP issues an ID query, the server CLP locates the destination
(if the SSV is not maintained locally) from its routing table and
forward the query to the particular host CLP. After which, the
value will be fetched from the host CLP.

The server CLP locates an SSV prior to updating its value in
the same way as routing an ID query. When the value ol the SSV

is updated, the host CL.P computes the attribute value range. If
the range changes, the updated range information must be and
only be forwarded to the direct neighbour CLPs.

3) Migration of Shared State Variable

When an SSV migrates, the change of SSV’s address
immediately affects the ID-to-address binding. The routing
lables on the server CLPs have ¢ be updaled with ils new
address. Immediate broadcasting the new address with each
move of any SSV will be too costly considering the number of
SSVs and times they may be moved. Instead, we propose a
gradual address updating approach to avoid any global
propagation for updating addresses.

As shown in Figure 9, the approach makes use of the fixed
architecture of the CLP tree. The port from which an S8V is
moved 1s recorded in the original host CLP, and the CLP
becomes the SSV's correspondence CLP. The map between
port and migrated SSVs is looked up as another routing table for
searching those SSVs. As illustrated in Figure 10, when ALP,
accessed SSV; earlier, CLP,, was SSV,’s original host CLP.
Obviously, at that time the query from ALP, on SSV; must be
routed to CLP, s right port along a fixed path (namely original
path, see Figure 9).
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ALPx
(C) Moved to elsewhere
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. ALP O o
Fig. 9. Gradual Address Updating and Routing

After SSV; migrates to a new host, from ALP,’s point of view,
there are three different cases: (1} 55V, has been pushed further
away (Figure 10(A}), (2) S5V, has been brought closer to ALP,
{Figure 10{B)) or (3) S5V, has been moved to elsewhere (Figure
10(C)). For case (1), when a new query reaches CLP,,, it will be
forwarded to CLP,,’s direct neighbour beyond its upper port4.
The forwarding will be relayed until the new host is found. For
case (2), the new host must be an intermediate node in the
original path, and the query will be answered straightforwardly
when reaching the host. For case (3), along the original path, the
query will pass a correspondence CLP,, and then it will be
relayed downwards to the new host CLP of SSV,. From the
above discussion, no matter in which new host an SSV locates,

1 Case (1} also applies when SSV; has been moved out [rom CLP,’s lelt
port.



the query will only travel along the exclusive path between the
ALP and the new host. The routing procedure does not concern
any CLP which locates off the path. The routing table of the
server CLP will be updated with the returned information. As
soon as all related server CLPs (whose client LPs have accessed
the SSV before the SSV being moved) have retrieved the new
address, the correspondence CLPs can simply release the record
about this SSV.

As a result of migrating an SSV, the value range ol ils type
may change in both the original and the new host. Therefore, the
attribute value ranges related to the two hosts have to be
re-computed and updated. However, this does not influence the
routing on other SSVs directly.

D. Range-based Routing

As introduced in Section II, the ports of CLPs are specially
designed to maintain the attribute value ranges, which are
located beyond each port. Using the attribute value range
information of SSVs can provide another candidate routing
solution, namely range-based routing. Under this solution, a
CLP forwards a query according to (1) the availability of the
SSV Lype being queried beyond its ports and (2) the value range
of SSV(s) belonging to the given type.

1) Range Query with Range-based Routing
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Fig. 11. Range-based Routing for Range Query

The range-based routing matches the query window with the
attribute value ranges along the searching paths to gradually
approaching the potential targets. Searching will be given up at
the directions where the query window and attribute value
ranges do not overlap. In the example shown in Figure 10, CLP,,
keeps a record of the SSVs within the circles in its three ports
respectively. Suppose that a range query, Query (X-pos, [2, 6],

300), reaches CLP,, it has two optional directions to relay the
query. Direction B will be given up as the attribute value range
[8, 9] does not overlap the window /2, 6]. The query will be
only forwarded through direction A as attribute value range (//,

5]) for this direction matches the condition. When an ALP

issues an attribute value range query, a range-based routing will

start from its server CLP. A range-based routing algorithm
searches the desired SSVs in following steps, used by any CLP

which receives a request (Figure 11):

1) The CLP checks the values of local SSVs against the query
window, packing the target SSVs matching the conditions
(if any).

2) The CLP computes the attribute value ranges maintained by
the two other ports (rather than the incoming port, i.e. the
port accepts this query), after which forwarding the query
through the port with overlapped range (if any).

3) If neither attribute value ranges matches the query, the CLP
will return the local target SSVs or “no-result” message to
the incoming port.

4) If either attribute value range matches the query, the CLP
blocks for SSVs to be found or “no-result” message from
the outgoing port and returns the results to the incoming
port.

5) The searching for current query via this CLP terminates, the
control is passed to the direct neighbour CLP beyond the
incoming port.

2) Influence of Definition of Shared State Variable on
Ranged-based Routing
Using simple SSV type has particular influence on the

range-based routing when querying with multiple attributes.
Figure 12 presents a snapshot of simulation in which an range
query (see Section III.C) is under processing. CLP, maintains
the X-pos of Tilel23 and the Y-pos of Tile456 while CLP;
maintains the Y-pos of Tile]23 and the X-pos of Tile456. When
the query is forwarded to CLP; and CLP; needs to decide the
direction for routing. It is obvious that Tilel23: <5, 6> meets the
conditions. However, if only using the combined range
information as criteria, the search will stop at direction A since
the range of Y-pos (Tile456.Y-pos = 2) does not match, and it is
the same for direction B. Hence, ALP, will get no result although
the target SSVs do exist. This problem is due to that the SSVs
associated with the same object are distributed arbitrarily and
the query conditions are set based on attributes rather than ID or
any SSV-specific information. In this case, the routing
algorithm has to search each individual attribute in an atomic
range query and consolidates the results afterwards.

CLP2

ey
Tile123 Y-pos = 6
Tile456: X-pos =2 $
| NS ——

Fig. 12. Problem with Range-based Routing using Simple SSV Type



3) Segmenting Attribute Value Range

As discussed previously, a CLP decides whether to forward a
query through a port totally relying on attribute value ranges
beyond that port. The range-based routing algorithm is sensitive
to SSV updates, by its nature. When an SSV update occurs, the
value range of its attribute may change in the host CLP. In order
to ensure accurate routing, the changed range has to be sent to
the CLPs being affected by checking against the corresponding
range. This global computation is expensive as it may occur for
each update on any SSV, which explicitly conflicts with the
principles of designing routing algorithms (see Section IV.A).
In order to reduce the overhead, a value range segmenting
approach is proposed.
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For example (see Figure 13(A)), a CLP contains a set of
SSVs ( X-pos of tiles) with values listed as: {20, 53, 56, 70, 80,
190, 310, 370). Instead of using a simple range description like
[Min(20), Max(370)], we segment the value space, such as
{Segl: [0, 100], Seg2: [100, 200], Seg3: [200, 300], Seg4:
[300, 400], Seg5: [400, 500], ...}. The approach logs the
number of SSVs whose values fall onto each segment. In Figure
13(A), we have (Segl(5), Seg2(l), Seg3(0), Seg4(2),
Seg5~n(0)}. The attribute range is  written as
[SeglSeg2(Seg4}. Those segments containing no SSV are
excluded from the expression. Therefore, the attribute range
does not need to be updated continuously, with the frequency
proportional to the granularity of segments. Obviously, the

segmented range should always cover the values of all SSVs it
represents.

When an update occurs, even if the value of the updated SSV
is beyond the original [Min, Max], the approach may not require
altering the segmented range immediately. For example,
suppose the SSV with value 370 is updated to 380, the updated
value still falls onto Seg4 (Figure 13(B)). The range has to be
updated only when there is no SSV having a value in one of the
segments (narrowing, see Figure 13(C)) or any SSV’s value
exceeds all existing segments (expanding, see Figure 13(D)).
However, the algorithm designers have to make tradeoffs
between the accuracy of routing and the efficiency of computing
ranges (see Section V), both subject to the granularity of
segments.

4) Segmenting the IDs of Shared State Variables

Each SSV is given a unique integer ID (see Section III), for
example two SSVs have ID 3000101 and 4400101 in Figure 8.
Similar to using attribute value ranges, we can calculate the
ranges of these integers (ID range) and record those at the ports
of the CLPs. Thus, ID Query can be routed based on the range of
IDs.

Load management has direct influence on the ID range. After
an SSV migrates, the ID range of its original and new host CLP
may change. This issue is similar to dealing with the SSV update
in attribute value range query. The segmenting approach also
applies in manipulating ID queries.

5) Comparison between Routing Solutions

The two categories of routing solutions involve different
research issues and problems. To make trade-offs amongst these
issues is a challenging work. In this section, we make a
qualitative comparison showing the advantages and
disadvantages of both solutions. The comparison is detailed as
follows referring to the algorithms described in Section
IV.C&D.

a) Availability of Shared State Variables

Given an SSV type of any ALP’s interest, both solutions
provide correct information of where those SSVs may be
available. The two solutions avoid routing accesses to those
CLPs which do not contain any SSV of the requested type. The
major difference is that the address-based solution gives exact
locations while the range-based solution directs the accesses to
the correct searching paths. It is likely that the range-based
solution can provide more accurate routing for range queries
than address-based routing, and vice versa for ID queries.

b) Efficiency in Performing Range Queries

When performing range query, the range-based solution
forwards the query to the potential targets in a bottom-to-top
manner. In the target narrowing procedure, those out-of-range
SSVs can be filtered out effectively under some particular
situations, e.g. the SSVs locate in the CLPs dispersedly and
their values distribute sparsely in the value space. The
address-based solution needs to route the access to the
neighbours (in the searching path) of all CLPs to match the



ranges between the query’s and the host CLPs’. In general, the
ranged-based solution forwards range query to a smaller set of
CLPs than the address-based solution does.

The two solutions require searching within the same number
of potential host CLPs. The solutions do not make any
difference in the complexity of searching within those hosts or
the overhead in delivering results to the requesters (some
ALPs).

c) Complexity for Maintaining Range Information

As discussed in section IV.D, the range-based solution
intensively relies on the attribute value range information. From
a CLP’s point of view, the attribute value ranges (on the other
CLPs beyond each of its ports) must be available and accurate.
A ranged-based algorithm needs to manage the segmented
ranges properly. Setting precise segment can obtain accurate
routing while it tends to result in a wide range update amongst
other CLPs with high frequency. Adopting coarse segment will
reduce broadcasting of updated ranges but accuracy of using
attribute for routing will be impaired.

It is unnecessary for the address-based solution to maintain
and broadcast range information, by this solution’s nature. A
CLP only needs to simply compute its local attribute value range
([Min, Max]) prior to notifying its direct neighbours.

In the case of handling SSV migration, the address-based
solution does not incur any extra communication overhead for
routing. In contrast, the range-based solution has to concern the
immediate impact on the previous and current host CLPs, and it
may involve updating attribute value ranges on the CLPs.

d) Efficiency in Shared State Variable Query

The address-based solution is able to resolve the address at
the server CLP immediately for an SSV ID query, under which
an SSV can be accessed via a fixed path without routing to
irrelevant CLPs. Using the range-based solution, querying an
individual SSV is not straightforward.

e) Complexity for Maintaining Routing Information

The address-based solution assigns different tasks to server
CLPs and other CLPs. A server CLP keeps addresses of all
SSVs of its client ALPs’ interest. However, address resolving
within a centralized node can be optimised. The address change
of any SSV does not affect routing. The range-based solution
distributes the routing information all over the CLP tree in an
implicit manner. The address changing of any SSV may affect
multiple CLPs or even the whole CLP tree.

f Design Complexity

The address-based solution assigns different tasks to server
CLPs and other CLPs. A server CLP keeps addresses of all
SSVs of its client ALPs’ interest. However, address resolving
within a centralized node can be optimised. The address change
of any SSV does not affect routing. The range-based solution
distributes the routing information all over the CLP tree in an
implicit manner. The address changing of any SSV may affect
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multiple CLPs or even the whole CLP tree.

V. EXPERIMENTS AND RESULTS
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Fig. 15. Illustrating Different SSV Value Distribution Patterns

A quantitative comparison of the two proposed solutions is
not trivial, as it involves the evaluation of a number of
complicated factors. Those include (1) distribution pattern of
the value of SSVs in the value space (SSV Value Distribution),
(2) the behaviour or access pattern of ALPs on SSVs, (3) the
physical distribution of SSVs on the whole CLP tree (SSV
Distribution Pattern), and (4) the distribution of the value of
SSVs in each individual CLP’. Factor 1 and 2 are at application
level related only to the agents and their environment whereas
factor 3 and 4 are at simulation level and can be controlled by
users[U5]. Moreover, some factors have particular influence on
the range-based routing solution, and those are (5) the ratio of
number of updates to number of range queries, (6) the
Sfluctuations between the updated value to the original value,
and (7) the granularity of value segments.

From the scale of CLP tree and number of SSVs, it is
relatively straightforward to estimate the computational and
communicational complexity of the address-based routing
solution using mathematical approaches. However, evaluation
of range-based routing needs to consider other complicated
factors at both application level and simulation level. For the
sake of a quantitative analysis, one approach would be to
directly implement and integrate the two solutions into the
DS-MAS kernel. However, this would require considerable
implementation efforts, and at least part of the implementation

5 This is different to the aforementioned value distribution parameter. For
example, in a scenario the value ranges of SSVs in all CLPs are very close, and
in another scenario the value ranges are significantly distinct from one CLP to
another.



could be in vain, as the strategies may not meet the performance
requirements. To avoid this, and to provide a generic framework
for the study of dynamic data access in distributed systems in
general, we have adopted a meta-simulation approach, as
proposed for instance in [13][14][22][24].

A. Performance Evaluation Meta-simulation Model

The design of the performance evaluation meta-simulation
follows a layered approach similar to [9]. The application model
is built at the top layer and responsible for generating realistic
query patterns. The next layer is the middleware layer, where
the routing strategies are described and the DS-MAS framework
is represented. The third layer, which typically is reserved for
the network model, is implicitly represented in the performance
measurements which are integrated by calculating the costs of
queries in the second layer. Thus, similar to many simulations of
P2P systems, the characteristics of the underlying network are
abstracted away by only counting hops and messages.

The application model focuses on the simulation of situated
agents, namely, an agent has a position that determines its
region of interest: only objects situated in the region can be
accessed by the agent. In addition, situated agents are usually
able to change their own positions. This behaviour was
modelled for a two dimensional environment, as shown in
Figure 14. An agent moves step-wise towards a pre-selected
target along the shortest path, and it randomly chooses a new
target on arrival. The distance an agent can move in each step is
written as step size (mark “a’), which reflects the rate of change
of the agent’s access pattern. The distance of the new target, the
target distance (mark “b”), is defined by the number of steps it
takes the agent to reach it. The step size and target distance
determine the activity scope and movement speed of an agent.
After each step of movement, an agent generates ID or Range
queries concerning its actual region of interest. Figure 14 plots
the traces of agents’ movement with step size = 1 (A) and step
size = 5 (B).

All SSV types within the MAS model have a spatial meaning,
i.e. the value ranges for Range queries reflect the actual
positions of the agents. Each SSV type represents a certain
dimension of the environment, such as “X-Pos” or “Y-Pos”.
SSVs may have a uniform value distribution or multiple normal
distributions, and those are illustrated in Figure 15(A) and (B)
respectively.

The model of the DS-MAS framework is formed by a set of
SSVs. Each SSV consists of (unique) ID, type, value and
position in the CLP tree. The modelled CLP tree is binary and
complete and therefore its structure can be defined by its depth.
Another important parameter is the number of segments used by
both routing algorithms, which determines the granularity of the
description of the value distribution of SSVs. To eliminate a
possible source of bias, no load management mechanism has
been modelled, i.e. the SSVs could not migrate (as proposed in
[20]), although the SSVs’ distribution pattern differs for
different runs. Nevertheless, the mutual impact of routing and
load management could be considerable and should be subject
of future research. The model was simulated using discrete time
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steps.

B. Setup of Experiments

The environment for the experiments is set as a
2-dimensional space containing 6,200 objects of 8 types. The
experiment model defines SSVs as the X-pos or Y-pos of any
object in the environment (12,400 SSVs of 16 types) and allows
SSVs having numerous value distributions. On initialisation,
there are 64 agents locating at any position in the space with
identical probability. The step size per dimension and the target
distance conform to normal distributions (u = 2.0, [1= 1.0) and
(1 =5.0 and O=2.0). Each agent executes 300 time steps, and
per time step it generates 8 requests for any type of SSV
randomly. The diameter of an agent’s region of interest is set to
2.0. The default parameters for the experiments are summarised
in Table 2 and 3.

The physical distribution of SSVs can be alternated by two
parameters, namely root imbalance and CLP fluctuation. Root
imbalance describes the percentage of additional SSVs hosted
by the root CLP comparing to the rest. When root imbalance =
0, SSVs are distributed evenly on all CLPs. When root
imbalance = 1, all SSVs are concentrated on the root CLP. The
CLP fluctuation constraints the maximum difference between
the greatest and smallest value of SSVs of the same type on an
individual CLP. For example, suppose CLP fluctuation = 0.05
and the designated type of SSVs can have a value space from 0
to 100, then the difference of these SSVs’ value on the CLP is
not greater than 0.05x 100 = 5: A CLP may host two SSVs of
type X with values 80 and 82, but another SSV of type X, with
value 75, cannot be hosted by the same CLP, because 82-75 >
5. Since SSVs are not moved but have dynamic values, this
condition holds only for the initial state.

The experimental results are reported in terms of routing cost
and accuracy. The routing cost is measured using two metrics:
the number of messages and the number of hops to be traversed
in resolving each access on SSVs. The number of messages is
the number of all messages that are generated by the routing
algorithm in order to resolve a query. Hence, the number of
messages is a measurement of the overall bandwidth
consumption. The number of hops is the maximum number of
messages that had to be sent sequentially until the request could
be resolved. This means, that the number of hops corresponds to
the maximal path length from the ALP generating the request to
a CLP which had to be contacted, multiplied by 2 (for the query
and the corresponding response). Hence, the number of
messages is a measurement of the overall latency. The two
metrics for the routing algorithms are denoted by variables
range-based,yesages, range-based),,, ~ (for  range-based
algorithm) and address-based,essages, address-basedy,y, (for
address-based algorithm).

In order to calculate the accuracy of the routing algorithms,
we compute the minimal number of messages and hops
(0Pt essages and OPt4p) Which is the absolute limit for optimising
the cost of any routing algorithm. Figure 16 gives an example of
querying two SSVs with the smallest set of CLPs and
connections for this query highlighted. Each connection needs



to transmit two messages (one request and one response), thus
the total number of messages is 10. The maxim number of hops
is record as 8 (for reading the SSV on the left), this is because
messages have to be sent sequentially (in any path) until
reaching the target and the latency in other concurrent search
paths are masked. The overhead between the ALP and its server
CLP are not counted. The ratio of the minimal number of
messages (or hops) to the number of messages (or hops) is
computed as the accuracy of routing algorithms. For example,
the “message accuracy” of ranged-based algorithm is written as

range—based __ op tmessa ges

Likewise, we can
accuracymessages - ’
range— based

messages
calculate the “hop accuracy” for ranged-based algorithm

(accuracy s ") and accuracy of address-based algorithm
address—based
messages

address—based

and accuracy,,,

( accuracy

Scalability is also an important issue. Nevertheless, for the
sake of simplifying the experiment design and focusing on the
factors listed above, we choose to fix the depth of the CLP tree,
the number of ALPs and SSVs in most experiments. The outputs
of the experiments will be checked against the qualitative
analysis on the algorithms in Section IV. Hence, the system
designers can decide what kind of solution to be adopted in
designing DS-MAS framework like systems.

SSsV1,

ssv2

O Communication
Logical Process

Agent
Logical Process

ALPo ALP1 ... ALPx ALPn

Fig. 16. Minimal Number of Messages and Hops (Optimal Cost) for Routing

TABLE I

SUMMARY OF THE DEFAULT APPLICATION LEVEL PARAMETERS
Name of Parameters Value
Time steps 300
Number of agents 64
Number of dimensions of the environment 2
Value space at each dimension [0, 100)
Number of SSV types 16
Shared State Variables 12,400
Value space for each SSV type [0, 100)

Events to be generated per agent per time step 8

Step size of all agents per dimension p=20,0=10
Target distance of all agents in steps p=5.00=20
Agent’s range of interest 2.0
TABLE III

SUMMARY OF THE DEFAULT SIMULATION LEVEL PARAMETERS
Name of Parameters Value
Depth of the CLP Tree 4
Number of client ALPs to each server CLP 4 ALPs per server CLP
Root Imbalance 0
CLP Fluctuation 1
Number of segments for routing algorithms 100

C. Effect of Agent’s Environment (SSV Value Distribution)

To test the effect of the features of multi-agent systems, we
adopt numerous non-uniform distributions of SSV values while
using default values for all other parameters. Values have been
assigned to SSVs in a round-robin manner by one of three
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normal distributions (see Figure 16(B)). The mean values of
e 2 1 ..
normal distributions are 16 A ,50 and 83 A . The deviation [J

is varied from O to 10 to make SSV value distribution change
from highly concentrated to highly scattered. Figure 17 reports
the effect of value distribution on the cost of routing algorithms
vs. the optimal cost.
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The range-based algorithm performs much better in terms of
number of hops, by closely approaching opt,,,;. However, given
that values of SSVs are scattered enough, the number of hops by
both algorithms converges to opty,,. With values of SSVs
distributed more sparsely, routing becomes more costly and
neither algorithm approaches 0pt,,esqg.s- The effect of SSV value
distribution is further emphasized in Figure 18. The
accuracyy,, of both algorithms converge to 1 while the maxim
of accuracy essages for both algorithms only approximates 0.8.
In all situations, the range-based algorithm is likely to incur less
overhead for routing range queries.

Experiments have also been performed to measure the
accuracy of making ID queries. The address-based algorithm
always achieves optimal results (accuracy = 1) while the
accuracy of the range-based algorithm is quite low, about 0.36.
This is due to that the range-based algorithm does not store the
location of an individual SSV and requires searches using
range-based techniques on SSV IDs (Section IV.D.4).

D. Effect of SSV Value Distribution Pattern

A set of experiments have been performed to examine how
the distribution pattern of SSVs in the simulation infrastructure
(the CLP tree) affects the performance of routing algorithms.
This subsection reports the effect of the simulation level factors
(1) the physical distribution of SSVs on the CLP tree, and (2)



the distribution of SSVs’ values on each individual CLP, given
the behaviour of agents remains the same in these experiments.
Two parameters, root imbalance and CLP fluctuation, are
varied between 0..1 and 0.05..1 respectively. Figure 19 gives the
accuracy of range-based algorithm for ID query in terms of
messages. The SSV value distribution on a CLP does not affect
the routing of ID query at all. However, concentration of SSVs
on fewer CLPs will dramatically improve the accuracy of
routing ID queries using range-based algorithm.

Message accuracy for ID queries of range-based approach

Message accuracy
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Fig. 19. Message Accuracy for ID Query
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Overall number of messages for range queries

Figure 20 illustrates the impact of the SSVs’ physical
distribution pattern on the cost of routing range queries using
different routing algorithms. When SSVs are distributed on all
CLPs uniformly (root imbalance = 0), range-based,,,, and
address-basedy,p; are nearly equal to opty,, while
range-based,yessages and address-based ,essqqes are very close but
still much greater than optesees. With the increase of root
imbalance, the routing cost gradually decreases. The
range-based algorithm adapts much better than the
address-based algorithm. When root imbalance = 1, all SSVs
locate at the root CLP and makes no difference to either
algorithm. However, this extreme case only reflects the idea of
using centralised CLP (see Section II).

Figure 21 presents the cost of performing range queries
against the value distribution on each CLP. The results are
similar to those obtained in Figure 17, which means the value
distribution of all SSVs and the value distribution of SSVs on
each individual CLP both have significant influence on the
routing cost involved in range queries.

The accuracy of routing algorithms against the SSVs’
physical distribution pattern is illustrated in Figure 22. The
results further indicate that the range-based algorithm adapts
better to the SSV’s distribution pattern. However, the latencies
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(number of hops) incurred by both algorithms are similar while
the range-based algorithm generates much less communication
traffic (number of messages). Furthermore, comparing to Figure
18, the value distribution on an individual CLP makes less
significant impact than the overall value distribution does.
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E. In-depth Study on Range-based Solution

In this section, we first present the experiments on how SSV
updates affect the performance of ranged-based routing
algorithm. The key parameters have been varied are: (1) the
ratio of number of updates to number of range queries, (2) the
Sfluctuation between the updated value to the original value, and
(3) the granularity of segments used in range-based algorithm.
We also introduce a set of preliminary experiments on the effect
of agent’s behaviour.

1) Effect of SSV Update (Application Level)

An agent randomly updates any SSV whose value is in its
region of interest. The SSV’s value is updated with absolute
offset (to the old value) randomly set conforming to uniform
distribution with lower bound 0 and the upper boundary varied
from 0.01 to 5. Furthermore, the probability that an agent
generates an update query is set between 0.01 and 0.5.

Figure 23 gives an overall picture of the correlation between
offset of updated SSV value and the ratio of update queries to
the messages (update messages) needed for accomplishing
update queries, in which three specific ratios of update queries
are highlighted. The results indicate that the increase of both
offset and the ratio of update queries lead to the generation of
more update messages. Compared to the number of overall
messages obtained in the previous experiments, the number of
update messages is very small. Although this depends on the



specific configuration of the experiments, it still suggests that
the overhead incurred by update query tends to be negligible in
an environment with heavy load and traffic.

Figure 24 demonstrates the effect of the ratio of update
queries to the routing cost and the breakdown of routing cost
involved in update query and range query. The ratio makes
significant impact on the number of messages/hops required by
both queries. Additionally, Figure 24(A) shows that basically
the address-based algorithm outperforms the range-based one
where exist frequent update queries. Although the
address-based algorithm generates more messages for range
queries, it still incurs fewer messages in total due to the benefit
in update queries. Figure 24(B) indicates that the number of
hops is linear to the ratio of update queries and different routing
algorithms do not make considerable difference in this aspect.
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Fig. 24. Influence on the Ratio of Update Queries to Routing Cost

2) Effect of Granularity of Segments (Simulation Level)

The experiments and results presented in the section mainly
concern the granularity of segmenting attribute value range for
the range-based algorithm. The number of segments used to
describe an attribute value range (segment number) varies
between 1..200. A larger number means a more precise attribute
value range description. The routing cost against segment
number is reported in Figure 25.

The number of messages required by address-based
algorithm is greater in most cases. Furthermore, the
address-based algorithm excels in minimising latency only
when segment number exceeds 100. Address-based solution
should be independent of the granularity of segment by its
nature. However, the address-based algorithm for this study
forces a CLP to update all neighbours if an update query
changes its attribute value range whereas the range-based

14

algorithm is designed to only update those being affected
(Section TV). It can be observed that when the number of
segments becomes large enough, the range-based algorithm
tends to update CLPs in a rather wide extent, and this will vastly
deteriorate its performance. Figure 26(B) provides extra criteria
to exhibit ranged-based algorithm’s better adaptation of routing
range queries to smaller segment. Figure 27 illustrates the
overall difference (range-based minus address-based) of the two
algorithms in number of total messages. Negative values denote
the space for achieving better performance for adopting

range-based algorithm, and vice versa for adopting
address-based algorithm.
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3) Preliminary Test on the Effect of Agent’s Behaviour
(step size)

In the experiments presented above, the environment
contains 64 agents randomly situating on a 100x100 surface and
12,400 SSVs distributed either sparsely or concentrated in 9
central points (Figure 15). This suggests that in such a crowded
environment no matter how far an agent moves (regionally or
globally); there are always plenty of SSVs for an agent to access
in its regions of interest. It is difficult to identify the effect of
agents’ behaviour under this circumstance. As far as this is
concerned, we have carried out a batch of preliminary
experiments with only 4 agents and one type of objects (1,550
SSVs of two types) to obtain a relatively spacious environment
for agents and objects. Correspondingly, the size of CLP tree
(depth = 2) is reduced to fit the agent number. In this set of
experiments, an agent’s behaviour pattern can be characterised
by its activity scope and the speed at which it moves. For each



agent, its range of interest is 5.0 and its stepsize is varied
between 0.1 (agent moves regionally) to 5.0 (agent moves
globally). Two different settings of target distance, (1, 0) and (5,
2), are tested to mimic different speed of agent moving. The rest
parameters have been set to default.

Figure 27 reports the effect of the size of an agent’s activity
territory in terms of number of hops and messages. Figure
27(A)&(B) report results for “quick” agents and (C)&(D) for
“slow” agents. Basically the address-based algorithm incurs
more latency while its overall cost is almost neural to the agent’s
moving pattern. When an agent moves more globally and
quickly, the range-based algorithm becomes more costly. When
an agent moves quickly (Figure 27(B)), it needs to generate
slightly more messages than the address-based algorithm does.

Influence of step size on haps for range queries

Influence of step size on number of messages for range queries

wof 600y
8 o) “
S
S
s 20
3000
&
g 000
S 3000
8 B0
s
= 340
° 00|
3
£ o)
2 rarge-based 400

—o— optinel

-6-6-0-6-6-6-0-0-5-0-0-6-0-6-0-0-6-6-0-0-5-6-6—-6-6-5-5 b-0-6-6-0-6-6-0-6-0-6-0-0-6-0-6-0-6-6-0-6-0-0-0-0—0-0-0~

£

1 Step Size 5 Step Sze 5

) ®
Influence of step size on nimber of hops for range queries Influence of step size on number of messages for range queries

oot 4600
@
o
2 © %00
-2 4000 g
s &
g S
3800 &
s .
g 5w
S 3600 8
2 g
l:ok w:ﬂm
= 8
530 £
° = 30|
8 5
£ 200 rare-based g
2 EW
E}
z

range 7]
—o—optimel
—&— adress based |

§g-O—6-0-0-6-6-6-0-6-6-0-6-0-5-6-0-6-0-5-6-0-0-5-56-5-0-

g
g

§g-B-e-00-0-6-0-0-6-6-0-0-6-6-6-0-0-0-0-6-0-6-9-6-6-9-0-

£

1 Step Size 5 1 Step Size 5

© ©)

Fig. 27. Effect of Agent’s Access Pattern

VI. RELATED WORK

Jang and Agha developed a framework for distributed
agent-based simulation [7]. They suggested dynamic
distribution of agents to reduce the communication overhead in
performing shared tasks and interacting with the environment.
The approach also aimed at sharing load between agents.
Significantly different to their work, our framework uses Sol as
criteria to determine the optimal distribution of share state.
Schelfthout et al proposed agent implementation patterns to
describe generic solutions to design agents and multi-agent
systems [25]. Shared state is modelled as shared state variables
in their work. This approach is adopted in our framework.

As for data accessing in distributed environment, it is a vital
issue to provide cheap and efficient routing (or locating) to
desired data. Network routing issues has been heavily studied;
numerous classic network routing algorithms have been
developed for a router deciding on which output line an
incoming packet should be transmitted [15]. In TCP/IP based
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networks, such as Internet, routers use routing algorithms to
forward packet in correct path(s) over the network by referring
to the address of the destination(s). Sometimes searching for an
optimal path in a stationary network is already a difficult
problem, therefore routing in mobile network will be much
more difficult [15][15]. Hence, we prefer using a fixed
infrastructure rather than exploring optimal routing algorithms
to overcome the complication incurred by dynamic network
structure.

As share state can be redistributed frequently, it demands a
routing solution to locating moving (mobile) data in a possibly
stationary network. For locating mobile objects, Steen et al
proposed a scalable location service using a distributed search
tree [26]. In the context of their approach, a mobile object is
referred to as any component capable of changing locations in a
network. The approach is address-based which binds an object’s
name and one more addresses where the object can be
contacted. The location service is designed to handle objects
with arbitrary migration patterns. Using hierarchical search tree,
when each new object is registered, the leaf nodes store the
addresses. By registering contact address in the smallest region
[28] in which the object is moving, the approach only requires
searching extremely short path to locate randomly migrating
objects [26].

This suggests that it is viable to have a promising routing
solution using address to identify distributed shared state and to
locate mobile data items. Moreover, agent-based simulation
often needs to perform range queries (see Section I1I.A) to meet
the requirement for agents to sense the environment. There have
been several previous investigations on range query for spatial
databases [15][15][15], these works are focused on the
optimisation of matching algorithms. The study on range query
for distributed data has received little attention in distributed
simulations [7]. The issue becomes much more complicated
when the value and the physical distribution of data items both
are dynamic. Range query targets on uncertain sets of data
matching given conditions on the data’s properties without
having the knowledge of the locations of targets. The special
feature raises the concern of relating the properties of data to the
location information in the networked agent environment.

VII. CONCLUSION

In this paper, we have investigated some research issues in
managing shared data in distributed simulations of multi-agent
systems (MAS). A distributed simulation of MAS often
involves a huge shared data with the interests of simulation
models on shared data altering dynamically during the
simulation. We have identified proper data distribution and
efficient data accessing as the key issues to optimising the
execution of MAS-based distribution simulations.

The paper has introduced the DS-MAS framework for
supporting MAS-based distributed simulations. The framework
uses the Communication Logical process (CLP) tree as an
underlying simulation infrastructure. The framework



successfully facilitates dynamic data distribution in the CLP tree

for approximating ideal Spheres of Influence. We have

discussed different schemes for modelling shared data, i.e.

composite type and simple type of Shared State Variables

(SSV), and evaluated them from different aspects. Using simple

SSV type can minimize the overhead for accessing different

attributes of the same class of objects. In the case of performing

range query for multiple attributes, using the composite SSV
type is superior.

We have explored the design of efficient and effective data
accessing solutions for locating and forwarding shared data and
proposed two alternative solutions, namely an address-based
solution and a range-based solution. The address-based solution
locates SSVs according to their address information. In
contrast, the range-based solution gropes after SSVs by looking
up the attribute value range information along the paths to the
destinations. The benchmark experiments have been performed
to investigate the collective dynamics of the routing solutions in
terms of cost and accuracy. The experimental results indicate
that:

1) The SSV value distribution has a vast impact on the overall
performance of both solutions. When the SSV values are
distributed sparsely enough, both algorithms can minimize
the latency of routing to the optimal case whereas they tend
to generate a large number of messages (~20% more than
the optimal case).

2) The distribution pattern of SSVs on the CLP tree is also a
decisive factor to the performance of routing. The more
evenly SSVs are allocated to the CLPs, the closer both
solutions approximate the optimal case. The little the
fluctuation of SSV values on an individual CLP is, the
accurate the routing is. This denotes that routing can be
optimised following the above rules.

3) Granularity of segment can considerably affect the routing
of update query. The address-based solution is superior to
the range-based one when segments are very precise. When
range-based routing is adopted, precise segment means
accurate routing. However, a precise segment leads to large
overhead in dealing with update query.

4) In various scenarios, both algorithms have their own
explicit advantages and drawbacks. It’s desirable to have a
hybrid scheme to adopt both algorithms in system design.
In general, address-based solution provides optimal routing
to ID query while range-based solution adapts better to
different circumstances in range query.

The research work presented in the paper provides a novel
method to analyse range query performance on distributed and
dynamic data whose location and properties are changing
constantly and unpredictably. This is an open challenging
problem and particularly difficult to tackle using pure
deterministic or analytic approaches. Besides agent-based
systems, the method may also apply in studying other
distributed systems, such as peer-2-peer communication system,
distributed databases etc. For our future work, we need to
further investigate the design and implementation of the
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appropriate routing algorithms into the existing DS-MAS
framework. It is also interesting to probe the computational
complexity of the routing algorithms at runtime. Another
important issue is to have a throughout study on the impact of
alternative load management mechanisms on the performance
of routing algorithms.
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