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Abstract

Since the publication of Gillespie’s direct method, diverse methods have

been developed to improve the performance of stochastic simulation methods

and to enter the spatial realm. In this paper we discuss a spatial τ -leaping

variant (Sτ) that extends the basic leap method. Sτ takes reaction and both

outgoing and incoming diffusion events into account when calculating a leap

candidate. A performance analysis shall reveal details on the achieved success

in balancing speed and accuracy in comparison to other methods. However,

performance analysis of spatial stochastic algorithms requires significant ef-

fort — it is crucial to choose suitable (benchmark) models and to carefully

define model and simulation setups that take problem and simulation design

spaces into account.
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1. Introduction

Representing space in models is becoming of increasing interest, because

todays advanced microscopy techniques allow the exact localization of molecules

in different compartments, e.g., the cytoplasm or nucleus. In contrast to the

well-stirred environment assumed by non-spatial methods (see, e.g., [13, 12,

15]), the interior of a cell is much more complex to capture: some structures

are located in specific regions, e.g., the endoplasmic reticulum; molecules

constantly bump into each other, which slows down the speed at which

they travel through the cytosol (this effect is known as molecular crowd-

ing, cf. [17, 27]); and even in the dilute case, the reactant partners have to

find each other before they can actually react.

The last decades brought forth a multitude of spatial stochastic simulation

algorithms, e.g., [9, 21, 30], each having different characteristics: some are

exact in the sense that they simulate every reaction and diffusion within

the system, others may trade accuracy for execution speed by introducing

additional approximations, and certain methods even use more than one

technique to accomplish the task (e.g., [11]).

But developing an algorithm is merely the first step, only a performance

analysis can establish its usefulness. There are two main approaches to do so:

one is to manually deduce performance properties from an abstract descrip-

tion of the algorithm, the other is to empirically observe the performance of a

concrete implementation on real hardware. Being undeniably useful, results

of a theoretical analysis — like asymptotic complexity [24] — still may miss

important aspects of algorithm performance in reality: the model of a modern
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computer having, e.g., a multi-layered memory hierarchy (e.g., cf. [25]) and

multi-core processor is only insufficiently captured by a sequential, unit cost

Turing machine. Another problem is the dependence of algorithm perfor-

mance not only on problem size but also on problem structure, i.e., multiple

input features. This is usually neglected in theoretical performance analysis,

as it often deteriorates tractability.

Additional care must be taken when the algorithm under scrutiny depends

on sub-algorithms, e.g., an event queue [16, 19]. They are so common and

ubiquitous in simulator development that they are often simply assumed “to

be present”, without considering them as independent variables that may

have a strong impact on overall performance.

All in all, a solely theoretical investigation of algorithm performance does

not appear to be sufficient [23] and needs to be complemented by empirical

performance studies that directly measure the run time and other perfor-

mance facets. We show that a wide range of different model characteristics

and sub-algorithm implementations has to be considered in order to avoid

biased results. To facilitate the former, we will discuss the benefits of us-

ing benchmark models : instead of searching for a real model that exhibits

a certain feature, it may be a good alternative to define the characteristic

of interest, e.g., the initial and steady state particle distribution, and build

a flexible, parameterizable benchmark model for its representation. While

the result does not represent a real system, it could still be worthwhile to

consider because it facilitates comparability and scalability.
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2. Background: Spatial Stochastic Simulation

Suppose a system containing a set ofN chemical species S = {S1, . . . , SN}
that can interact according to M reaction equations R = {R1, . . . , RM}. For

simplicity, let the volume of the system be a cube with side length λ. In the

non-spatial case we assume that the particles of the species are distributed

homogeneously within the volume — the system is well-stirred. However,

sometimes this assumption does not hold; species could be present only in

specific regions of space, e.g., near a membrane, or the time it takes for

them to travel a certain distance cannot be neglected. One way to represent

an inhomogeneous distribution is to discretize the volume into L smaller

sub-volumes (SV), each one having a side length λsv = λ/ n
√
L and being

well-stirred. The variable n shall denote the dimension of the system, so

n = 2 represents a two-dimensional and n = 3 a three-dimensional volume.

Apart from participating in reactions, particles can also diffuse from a

sub-volume into a neighboring site. This requires the assignment of diffusion

coefficients to each species, which are stored inside an additional set D =

{D1, . . . , DN}. Furthermore, an L× 2n connectivity matrix C shall store the

neighbors for each sub-volume, with the submatrix Cl ≡ C[l; 1 . . . 2n] holding

the diffusion targets for particles leaving l.

With L sub-volumes, the state of the entire system can be represented by

an L × N state matrix X, with entry xl,i giving the number of Si particles

inside sub-volume l. Without knowing the velocity, energy and several other

properties of all molecules at any time, reactions within sub-volumes and the

movement of particles seem to take place at random. The evolution of the

system, i.e., how the number of particles in each sub-volume changes over
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time, can be therefore interpreted as a stochastic process X(t) over a matrix

of random variables and X(t) = X shall denote the current state; similar to

the connectivity matrix, Xl represents the row vector X [l; 1 . . . N ], i.e., the

state of sub-volume l ∈ [1, L].

Let us now focus on the reactions. Generally, an equation in R can be

written as:

Rj :
N∑
i=1

vrjiSi
cj−→

N∑
i=1

vpjiSi, (1)

with Si ∈ S and v
{r,p}
ji as stoichiometric parameters. The stochastic rate con-

stant cj depends on physical properties of the reactant species (e.g. molecular

weight, size), the solvent, temperature, and other conditions [14]. It is de-

fined such that cjdt gives the probability that during dt a particular set of

reactant particles of Rj interact via a reactive collision inside the system.

For convenience, if vrji = 0 or vpji = 0, then species Si will not be listed as a

reactant or product, respectively, in the equation. The state change vector

vj = (−vrj1 + vpj1, . . . ,−vrjN + vpjN) summarizes the changes in the number of

particles for each species if Rj takes place.

Based on the definition of cj, the propensity alj(X) for reaction Rj is

defined as alj(X) = H l
j(X)cj, with X(t) = X as the current state, Hj(X)

as the function calculating the number of reactant combinations for Rj in

l, and alj(X)dt as the probability that there will be a reaction Rj during dt

somewhere inside l. After executing Rj in sub-volume l the new state at time

t+ ∆t is Xl(t+ ∆t) = Xl + vj.

Stochastic simulation algorithms can be separated into exact and approxi-

mative variants. Exact algorithms, like the Next Sub-volume Method (NSM,

[9]) simulate every single event that occurs inside the system. In a nutshell,
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they find out what event type (reaction or diffusion) will take place next and

when this will happen; with this information the algorithm can advance the

time and update the state of the system. But with large propensities (due

to high copy numbers of molecules and/or large stochastic rate constants or

diffusion constants), the time step between successive events might decrease

drastically, rendering the simulation progress very slow. Another problem

arises when the model at hand is inherently stiff [cf. 6, p. 67 ff.], i.e., events

occur on largely differing time scales, with fast events (e.g., reactions with

a high propensity value) reaching equilibrium very quickly. In this case an

exact algorithm would be busy executing only a subset of the events for most

of the time while the remaining, e.g., slow reactions, would have a greater

influence on the model dynamics. In contrast, approximative algorithms

(e.g., the Gillespie Multi-particle Method GMPM, [30]), as the name already

implies, trade accuracy for execution speed, making it possible to simulate

larger models.

3. Spatial τ -leaping and the Sτ algorithm

Before we delve into this alternative simulation algorithm, we will first

give a rough sketch of the basic leap idea, which has been introduced by

Gillespie et al. [15] (and later improved by several authors, see, e.g., [4, 29,

34]) to speed up the simulation of biochemical reaction networks.

Suppose a single sub-volume l, whose state is given by Xl, and ignore any

outgoing or incoming diffusion events for the moment. Instead of simulating

every single reaction that occurs inside it, as done by exact algorithms, τ -

leaping performs “leaps” along the time line, calculating for each reaction the
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number firings Kj during such an interval. The size of a leap, in the following

denoted by τ , is restricted by the so-called leap condition, which states that

the propensities alj(X), j ∈ [1,M ] have to remain nearly constant during τ .

Gillespie showed that if this condition is fulfilled, an approximation for Kj

can be given by a sample from the Poisson random variable Pj(alj(X), τ)

with mean and variance alj(X)τ .

Spatial τ -leaping methods additionally include diffusion events between

sub-volumes into the calculation for a τ value. For example, Márquez-Lago

and Burrage took binomial τ -leaping as the basis and proposed a spatial al-

gorithm that performs local leaps: the sub-volume with the minimum next

event time is selected and based on its current state the number of reac-

tion and diffusion events taking place within it get calculated [26]. Though

considering particles leaving the sub-volume, the method ignores the ones

entering it during the leap, which could lead to inaccuracies.

While accounting for incoming particles, Rossinelli et al. [31] split the

τ calculation for a single sub-volume to find a leap candidate for reaction

and diffusion events independently; the final leap value is then the minimum

of both. However, reaction and diffusion events take place concurrently, so

both event types are not independent — an argument also raised in a recent

publication by Iyengar et al. [21] which introduces a spatial τ -leaping variant

very similar to the one developed for this paper.

Other authors also used the leap method to simulate spatially inhomo-

geneous systems, e.g., [35, 8]. An interesting hybrid algorithm was proposed

recently [11], with the aim to speed up the simulation of the diffusion events.

The distinct feature of this method is that it decides for each species and sub-
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volume neighbor pair whether to use a macroscopic (numerical integration),

approximative mesoscopic (τ -leaping), or exact mesoscopic (NSM) diffusion

scheme for the current iteration.

3.1. Derivation of Sτ

A new reaction set R′ is defined as

R′ = R ∪
N⋃
i=1

{
RM+i : Si

ci−→ ∅
}
,

with ci = 2nDi/λ
2
sv. The additional reactions represent the diffusion of

species into neighboring sub-volumes. The diffusion rate γli(X) for species Si

can be calculated as γli(X) = cixl,i; unlike Iyengar et al., having only a single

rate per species and sub-volume means we assume that diffusion is equally

possible in all directions. Each new reaction RM+i inside R′ has a state

change vector vM+i = −1Ni , i.e., the N -dimensional vector with vM+i,i = −1

and vM+i,j = 0, j 6= i. For each reaction Rj ∈ R′ the propensity ξlj(X) is:

ξlj(X) =

a
l
j(X) j ∈ [1,M ]

γlj−M(X) j ∈ [M + 1,M +N ].

The change of the propensity for a given leap value τ can be written as:

∆ξlj(X) ,|ξlj(X + Λ(τ ; X))− ξlj(X)|

≈ tr(∇ξlj(X)TΛ(τ ; X)) =
L∑
l′=1

N∑
i=1

Λl′,i(τ ; X)
∂ξlj(X)

∂xl′,i
;

(2)

here Λ(τ ; X) represents the state change from X to X(t + τ) and the sec-

ond line is a result of a Taylor expansion around X. To satisfy the leap

condition, we want the mean and variance of ∆ξlj(X) to be bounded by
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max{εξlj(X), cj}, with ε as the error control parameter. Note that we use

the modified requirement as proposed by Cao et al. in [4]; this is necessary

because empty sub-volumes would produce a τ candidate which is zero –

and the simulation would come to a halt. By focusing solely on sub-volume

l, ∂ξlj(X)/∂xl′,i is zero for all l′ 6= l and thus we need to consider only the

l-th row vector of Λ(τ ; X), denoted by Λl(τ ; X), which tells us how the pop-

ulation in l changes during the leap. In the original non-spatial τ -leaping

algorithm, Λl(τ ; X) only depends on the reactions inside sub-volume l. But

with reaction-diffusion systems the state can now also be altered by diffus-

ing particles that either enter or leave l. Taking this into account, the state

change for l is:

Λl(τ ; X) =
M+N∑
j′=1

K l
j′(τ ; X)vj′ +

N∑
i=1

I li(τ ; X)1Ni ; (3)

the rightmost term sums up the changes made by particles diffusing into SV

l. As in the non-spatial τ -leaping algorithm, if a leap value τ satisfies the

leap condition, the number of firings for events Rj′ ∈ R′ inside l during τ can

be approximated by a Poisson random variable P(ξlj′(X), τ) with mean and

variance ξlj′(X)τ , so

K l
j′(τ ; X) ≈ P(ξlj′(X), τ). (4)

The question is now how to approximate I li(τ ; X). For this, let us define an

incoming diffusion rate as follows:

βli(X) =
1

2n

2n∑
k=1

γ
Cl,k
i (X)

Obviously, βli(X) depends on the diffusion rate γ
Cl,k
i (X) for species Si in all

neighbors k ∈ [1, 2n] of SV l; multiplying it by the factor 1/2n results in the
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rate relative to one neighbor.

If the leap condition can be satisfied for both the reaction propensities and

the outgoing diffusion rates for all species and sub-volumes, then the number

of incoming diffusion events can also be approximated with a Poisson random

variable with mean and variance βli(X)τ , hence I li(τ ; X) ≈ P(βli(X), τ). Two

things should be noted here: first, P(βli(X), τ) is the sum of the independent

Poisson random variables P(γ
Cl,k
i (X)/2n, τ), k ∈ [1, 2n]; we look at the states

of all neighbors of SV l and approximate how many Si particles will diffuse

into l during a leap of size τ . In other words: if a sample of P(γli(X), τ)

gives the number of Si particles that will diffuse out of l (see eq. 4) and

each of the 2n neighbors of l has the same probability of being selected as a

target, then sampling from P(γli(X)/2n, τ) provides the amount of particles

that will enter one specific neighboring site. Secondly, after finding a value

for τ , a sample fi is only generated for P(γli(X), τ); then, for each of the

fi particles a target neighbor is selected from Cl with a point probability of

1/2n.

Equation 3 can now be written as

Xl(t+ τ)−Xl ≡ Λl(τ ; X)
M+N∑
j′=1

P(ξlj′(X), τ)vj′ + b, (5)

with the vector b defined as:

b =
N∑
i=1

P(βli(X), τ)1Ni = (P(βl1(X), τ), . . . ,P(βlN(X), τ)).

Inserting equation 5 into 2 gives:

∆ξlj(X) ≈
N∑
i=1

∂ξlj(X)

∂xl,i

(
M+N∑
j′=1

P(ξlj′(X), τ)vij′ + bi

)
. (6)
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Writing the propensity change this way makes it very easy to explain what

is calculated here: at first, we look at how the propensity depends on species

Si. If Si is not a reactant of Rj, then ∂ξlj(X)/∂xl,i is zero and we do not

have to consider the part inside the brackets. On the other hand, if reaction

Rj depends on Si, then we estimate how its state is changed during τ –

which is given by the value inside the brackets: the first term sums up the

changes made by reactions and outgoing diffusion events (again, vij′ = 0 if

Si is neither a reactant nor product of Rj′), the second one counts how many

Si particles enter l.

Both the mean and the variance of the expected change in the propensity

should be bounded by the value max{εξlj(X), cj}. With equation 6, the

estimates for both quantities are:〈
∆ξlj(X)

〉
≈

N∑
i=1

∂ξlj(X)

∂xl,i

(
M+N∑
j′=1

〈
P(ξlj′(X), τ)

〉
vij′ + 〈bi〉

)

var
{

∆ξlj(X)
}
≈

N∑
i=1

(
∂ξlj(X)

∂xl,i

)2(M+N∑
j′=1

var
{
P(ξlj′(X), τ)

}
v2ij′ + var {bi}

)
The mean and variance for the Poisson distribution are

〈
P
(
ξl, τ

)〉
= var

{
P
(
ξl, τ

)}
=

ξlτ . 〈
∆ξlj(X)

〉
≈

N∑
i=1

∂ξlj(X)

∂xl,i

(
M+N∑
j′=1

ξlj′(X)τvij′ + βli(X)τ

)
≡ µlj (X) τ

var
{

∆ξlj(X)
}
≈

N∑
i=1

(
∂ξlj(X)

∂xl,i

)2(M+N∑
j′=1

ξlj′(X)τv2ij′ + βli(X)τ

)
≡
(
σlj(X)

)2
τ

With the help of µlj (X) and
(
σlj(X)

)2
, an expression for calculating a τ

candidate can be found:

τ = min
l∈[1,L]

{
min

j∈[1,M+N ]

{
max{εξlj(X), cj}∣∣µlj(X)

∣∣ ,
(max{εξlj(X), cj})2(

σlj(X)
)2

}}
. (7)
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Having obtained a suitable τ , the next step would be to generate for each

reaction Rj a sample from the Poisson distributed random variable (RV)

Pj(ξlj(X), τ). But this might lead to incorrect results. Poisson RV are un-

bounded and it could happen that the population of a species becomes nega-

tive as a consequence of too many reaction firings. Several methods have been

published to prevent this, e.g., by using bounded binomial random variables

[34, 7] or by classifying reactions into critical and non-critical and handling

critical reactions differently [3] (the latter was chosen for the Sτ algorithm).

Most τ -leaping implementations switch to an SSA phase if τ is very small;

the threshold for this decision is the time interval τ̂ until the next event will

fire, which is approximately 1/
∑L

l=1

∑M+N
j=1 ξlj(X). If τ is smaller than a

multiple θ of this value, e.g., 10τ̂ , then a number NSSA of exact iterations is

performed. Instead of calculating only small leap values, which is equivalent

to a huge effort with only small gain, the algorithm tries to overcome the

critical region in the state space by falling back to a much simpler and, in

this case, often faster exact simulation.

3.2. A First Analysis

Apart from possible optimizations in the implementation, it also could be

interesting to see how the basic algorithm behaves when faced with different

problem instances. To do so, let us focus on the following two questions:

• Given a model, what are the conditions on the current state so that

a Sτ leap is at least θ times larger than a single average NSM step

1/
∑L

l=1

∑M+N
j=1 ξlj(X)?

• How does this value scale with the model size (e.g., with the number
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Figure 1: The “toy models” used for analyzing the spatial τ -leaping al-

gorithm. (a) Only the center sub-volume contains A particles. (b) Some

particles diffused into neighboring sub-volumes. (c) Each sub-volume now

contains at least one A particle.

of sub-volumes or initial particles)?

While specific answers could be found for any model, it may be a better ap-

proach to start with small benchmark problems representing common model

characteristics, e.g., the spatial distribution of particles. Figure 1 shows a

simple 3× 3 model with periodic boundaries and a single species A allowed

to diffuse into every sub-volume. The problem is simplified by the assumption

that each edge sub-volume (E) contains the same amount particles (xE,A);

this also applies for the corner sub-volumes (Co with xA,Co). Initially, A par-

ticles are only present in the center (1a); as time progresses, they diffuse into

the nearest neighbors (1b) and eventually reach the outermost sub-volumes

(1c). In summary, this model represents the simplified transition of a system

from an initially inhomogeneous to a well-stirred particle distribution.

Now the task is to analyze how the initial number of A particles present

in the center, edge and corner SV for each of the scenarios shown in figure 1

influences the size of τ and to compare the result with the respective average

NSM time interval. Having no reactions defined, the only entry for the vector
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R′ is the diffusion of A into neighboring sub-volumes, R1 : A
c1−→ ∅, a first

order reaction with c1 = 2nDA/λ
2
sv and al1(X) = c1xl,A, l ∈ {C,E,Co}; for

simplicity, the diffusion constant DA is set to 1 s−1 and the side length λsv

to 1.1 Furthermore, in a two-dimensional model (n = 2) each sub-volume

has four neighbors, so taken all together the propensity function reduces to

al1(X) = 2nxl,A s−1 = 4xl,A s−1. Due to the simple structure of the model, it

is not difficult to find the values for µl1(X), and
(
σl1(X)

)2
:

µC1 (X) = −16xC,A + 16xE,A
(
σC1 (X)

)2
= 64xC,A + 64xE,A

µE1 (X) = −12xE,A + 4xC,A + 8xCo,A
(
σE1 (X)

)2
= 80xE,A + 16xC,A + 32xCo,A

µCo1 (X) = −8xCo,A + 8xE,A
(
σCo1 (X)

)2
= 96xCo,A + 32xE,A.

Finally, getting a τ for each of the scenarios is simply a matter of inserting

the results just presented into equation 7 and using an appropriate initial

configuration of {XC(0), XE(0), XCo(0)}.
For the following analysis the error control parameter ε has been set to

0.03. In the first scenario (1a, with XC(0) = [1, 104]) τC will eventually

converge to 0.0075 (ε/4) and τE is always 1/xC,A (in µE1 (X) and
(
σE1 (X)

)2
,

only the second terms are non-zero and the nominators in equation 7 are c1 =

4 and c21 = 16, respectively, so we have τ = min{4/(4xC,A), 16/(16xC,A)}).
The Next Sub-volume method takes a step of size 1/aC1 (X) = 1/4xC,A, so θ =

4, i.e., a single leap is roughly equivalent to performing four NSM iterations

— a sobering result, considering the complexity the Sτ algorithm.

1No units of length are given here as they are not relevant for now. Instead, DA and

λsv can be interpreted as being given relative to some unit length scale (e.g., if the scale

is nm, then DA = 1 nm2s−1 and λsv = 1 nm).
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For the next scenario (fig. 1b, XC(0) = 104, XE(0) = [1, 104], XCo = 0),

the sites dominating the τ selection for most of the initial setups are the

corner sub-volumes, similar to edges in the previous example. Both the

center and the edges would allow larger jumps, but the size will eventually be

restricted by 1/(2xE,A) (which is obtained in a similar way as it has been done

for the first scenario), i.e., the particles diffusing into the corners, and thus as

XE(0) is increased θ will converge to 10. In contrast to the former scenario

there is a peak of about θ ≈ 60 for the ratio between τSτ and τNSM , located

at {104, 384, 0}. With increasing xE,A in the edge sub-volumes, the difference

between particles coming from and leaving towards the center decreases, and

so does
∣∣µE1 (X)

∣∣. But at the same time the ratio 1/(2xE,A) gets lower, leading

to smaller τ candidates for the corners; the peak therefore represents the

optimum number of particles at the edge sites, i.e., the configuration yielding

the maximum leap value. This is an important observation indicating that

Sτ ’s performance (and the performance of spatial leap methods in general)

is significantly dependent on the particle distribution: for the best run time,

the difference between the amounts of particles moving into or out of a sub-

volume has to be small, otherwise the large change in the diffusion rate

would only permit small time intervals. It should also be remembered that

a τ value is calculated over all sub-volumes; even if there is only one pair

of adjacent sites having large differences in the population of a species, then

this may dominate the size of the leap to a strong extent. Figure 2 shows

the results for the third scenario (fig. 1c, XC(0) = 104, XE(0) = [1, 104], and

XCo(0) = [1, 104]), which look much better. There are optimal setups for each

of the τ candidates (the “red stripes” in fig. 2a), but the overall result also
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Figure 2: Leap and θ values for the third toy scenario (fig. 1c). Now both

XE(0) and XCo(0) are independently varied in the interval [1, 10000] while

XC(0) is again fixed to 104. With a high overall population a single Sτ

iteration is equivalent to performing several thousands of NSM steps.

looks quite promising: with large numbers of A particles in all sub-volumes,

θ can range up to 105, so a single Sτ leap iteration encompasses ≈ 105

NSM iterations. Even low populations allow considerable jump intervals

compared to a single NSM step, e.g., θ ≈ 54 for {104, 350, 100}. But it

should be emphasized at this point that a value of ≈ 105 is not the attainable

speed-up — this would only be the case if the time required to perform a

single iteration is the same for NSM and Sτ , which is very unlikely due to

a significant overhead inherent to the leap size calculation. As an example,

if we found out that the time it takes to calculate a leap candidate and

perform the jump corresponds to the execution of, e.g., 500 NSM steps, then

Sτ should be faster by a factor of approximately 200 — at least for the type

of models discussed in this example.
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4. Performance Evaluation

All methods are implemented as plug-ins for the open-source modeling

and simulation framework JAMES II [18]. It is written in Java 1.6 and is

focused on delivering re-usable software components — so-called plug-ins —

for simulation applications in general. A plug-in may rely on other plug-

ins of a certain type, e.g., event queues, to fulfill auxiliary tasks. As these

sub-algorithms may impact performance considerably, the design space of a

spatial SSA approach should be explored by exchanging them (or changing

parameters). Therefore, we speak of simulation setups — combinations of

parameterized plug-ins for executing a simulation — instead of simulation

algorithms. We restrict our study to benchmark models. Though not of

immediate biological relevance, their application still has several advantages

compared to real-world models (e.g., cf. to [20, p. 202] and [22, p. 219-

220]): they improve comparability, provide more relevant parameters to be

investigated, are easier to implement, and may allow to derive some analytical

results to steer (or validate) the empirical performance analysis (see, e.g., the

last section). A suitable benchmark model subsumes sets of more realistic

models all exhibiting a specific property.

4.1. Performance Metrics

Not all simulation setups compute exact model trajectories: those con-

taining Sτ or GMPM implementations give approximations instead. It is

therefore necessary to evaluate both the execution speed and the accuracy

of a setup. The execution speed of a simulation setup can be measured per

single execution, i.e., by stopping the time it takes until the computation
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is finished. The accuracy of the obtained results, however, can only be esti-

mated by comparing result distributions of approximative and exact variants.

What is considered a good performance ultimately depends on what the user

regards to be a good compromise between execution speed and accuracy.

To make valid execution speed comparisons, our models are designed so

that all trajectories impose similar computational load. Multiple replications

are required nonetheless, to deal with the noise introduced by hardware, op-

erating system, and virtual machine. Note that we are interested in the

relative runtime performance of the proposed methods. While our Java im-

plementations may not be on par with hand-crafted C code, general trends

and findings should still be transferable to other circumstances.

The accuracy evaluation for the spatial SSA algorithms is based on a two-

sample Chi-square test (see, e.g., [28]), which checks whether the marginal

frequency distributions (i.e., estimations for the marginal probability density

functions) for two samples are similar. During a calibration step we store

samples of the model state at a prespecified time t̂ into sets (in our case,

50 samples per set); here the NSM takes the role of the exact algorithm.

Similar to the approach presented by Cao and Petzold [5], we use it to create

a threshold for the actual comparison. A single X2
p,q candidate is obtained

by comparing two sets p and q:

X2
p,q =

L∑
l=1

N∑
i=1

K∑
k=1

(p̂l,i,k − q̂l,i,k)2
p̂l,i,k + q̂l,i,k

. (8)

The values p̂l,i,k and q̂l,i,k are the relative frequencies for state k of species Si

in sub-volume l. With a total of 100 sets, 4950 X2 candidates are generated.

Based on these and the defined significance level (here, α = 0.05) a threshold
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value X2
t for rejection is calculated.

4.2. Sub-Algorithms & Hardware

We compare the performance of spatial τ -leaping with that of the Next

Sub-volume Method (NSM) and Gillespie’s Multi-particle Method (GMPM),

both of which make use of an event queue. The set of event queues under

scrutiny has been restricted to a simple list implementation (Simple), a heap

event queue (Heap — proposed by Gibson and Bruck in [13]), an MList

with an additional variant for faster event time updates (MList/MListRe

— see [16]), and a TwoList implementation (TwoList — see [1]; we use

the implementation from the TwoList2 plug-in of JAMES II ). A previous

study [22] showed that random number generator (RNG) run time is negli-

gible for the overall execution time when simulating well-stirred systems, as

it is dominated by the execution time of the event queue implementation.

Since we expect the same to hold for reaction-diffusion systems, we refrain

from exploring the impact of different RNGs on execution time and use the

implementation provided by the Java Base Libraries.

The performance measurements have been obtained from a Windows XP

64-bit workstation with two 2.5-GHz QuadCore Xeon Processors and 8 GB

RAM. We never executed more than 6 simulation runs concurrently — two

of the eight cores could therefore handle external load at any given time.

Each sequential experiment was assigned to a dedicated core, which achieves

a composite score of 528 for the (large) Java SciMark2 [33] benchmark (with

JDK 1.7-beta 64-bit).
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4.3. Benchmark Models

The test models for reaction-diffusion systems are specifically designed to

represent different conditions of spatial inhomogeneities in species distribu-

tion. We use four model types: two variants of a radial model, the molecule

generator model, and the protein phosphorylation model. Common to all is

a cube-shaped volume with a variable number of sub-volumes per dimen-

sion, ranging from a small 5 × 5 × 5 = 125 SV setup to a large one with

21× 21× 21 = 9261 sub-volumes.

Radial Model. The first variant consists of only a single species A which can

diffuse freely inside the system; it is initially located only in the center sub-

volume. The interesting characteristic of this model is the transition from

a complete inhomogeneous to a nearly uniform molecule distribution. The

second variant includes two additional species and a single reaction rule:

R1 : A+B
cp−→ C

Similar to the first, species A is located within the center sub-volume only.

In contrast, species B is distributed homogeneously throughout the volume.

Both A and B can diffuse freely. Though the two variants start with A inside

a single sub-volume, the first one models its distribution over time inside an

empty volume, whereas the second represents a point-sized injection of A into

an area and the successive reaction with particles that are already present.

Molecule Generator Model (MolGen).

R1 : C
cp−→ C + A

R2 : A
cd−→ ∅

(9)
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At first glance the generator model resembles the first radial model vari-

ant, but there are several differences. While in the latter the number of A

molecules is fixed for the entire simulation time, another type of molecule,

C, now constantly produces A molecules in the center sub-volume. Reac-

tion R1 does not consume the generator molecule, so the C concentration is

kept constant during the simulation interval. Furthermore, the A molecules

degrade at a specific rate; instead of eventually ending up with almost the

same concentration of A particles in every sub-volume, the generator model

keeps an inhomogeneous distribution.

Protein Phosphorylation Model (Phospho).

R1 : P +K
c1−→ PP +K

R2 : PP + PH
c2−→ P + PH.

(10)

Phosphorylation is the process of attaching a phosphate to another molecule,

which often plays a crucial role in the activation and deactivation of enzymes.

The model is based on the one used by Brown and Kholodenko in [2]: a

protein P is phosphorylated by a membrane-bound kinase K and dephos-

phorylated by a cytosolic phosphatase PH. Particles for K and PH are only

present in the leftmost and rightmost columns of the grid, respectively, while

P and PP are allowed to diffuse freely.

4.4. Parameter Settings

We varied the following model parameters: number of sub-volumes, initial

state of the system, distribution of particles, and diffusion constants stored

in D. Adding more sub-volumes to a model should increase the run time for

each of the algorithms under study. How the particles are initially distributed
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may not be that relevant for the performance of both the NSM and GMPM.

For example, it does not matter if there are 10000 particles in only one

of 100 sub-volumes or 100 particles at each site, the average NSM time step

(1/
∑L

l=1

∑M+N
j=1 ξlj(X)) is the same for both scenarios. In case of the GMPM,

the length of the intervals between diffusion events is entirely independent of

the system’s state and during the SSA phase the time until the next reaction

takes place in any SV is approximately 1/
∑L

l=1

∑M
j=1 ξ

l
j(X). However, spatial

τ -leaping is a different subject: the closer a system is to a homogeneous

distribution, the better Sτ should perform compared to an NSM execution

(see sec. 3.2).

Furthermore, note that we only varied the diffusion but not the reaction

constants; for all experiments the latter has been set to fixed values. We

are aware that modifying the reaction constants likely has a serious impact

on the performance of the algorithms as they are an integral part of the

reaction propensity calculation. However, to limit the number of independent

variables, we have decided to vary the ratio between diffusion and reaction

constants instead.

4.5. Performance Results

Overall Execution Speed. We studied more than 150 model setups by combin-

ing several JAMES II components to semi-automatically analyze algorithm

performance: a performance database, a replication technique that allows

to focus on the best-performing simulation setups, and a mechanism that

selects a suitable simulation end time for a given model setup [10]. Execu-

tions that exceeded a predetermined timespan were aborted. If not stated

otherwise, the maximal admissible duration for a single run was set to 20
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minutes. Aborted runs are marked by an asterisk (*) in the graphs. Each

run was replicated at least four times. We checked the standard deviation of

all replicated run times, but found them to be in reasonable limits: for all

runs longer than a couple of seconds, it was much below 10% of the execution

time. For the sake of clarity, we omit the standard deviation and only show

averaged results.

Both GMPM and NSM have been combined with the event queue imple-

mentations listed in the last section. Furthermore, we defined 7×6×5 = 210

simulation setups for Sτ : all combinations of nc ∈ {2, 3, 4, 5, 7, 9, 10} (which

is used to separate the set of reactions into non-critical and critical channels,

see [3]), ε ∈ {0.03, 0.034, 0.038, 0.042, 0.046, 0.05} (the error control param-

eter), and NSSA ∈ {10, 20, 30, 40, 50} (the number of exact SSA iterations

that will be executed if the leap value is too small). Several publications

mention what parameter sets turned out to be suitable during their study.

The values for this paper have been chosen to represent a common range of

parameterizations, as suggested in various literature, e.g., [4, 32].

Figure 3a presents some rather encouraging performance results for Sτ ,

which consistently outperforms NSM but in turn is outperformed by GMPM.

We expected GMPM to be faster than Sτ because its strong approximations

cut much computational load. Another interesting aspect of the results in fig-

ure 3a is the impact of the event queue implementation on NSM performance.

If the best Sτ setup is compared to the best NSM setup, it outperforms it

usually by about one order of magnitude. If, however, we compare it to the

worst NSM setup, the comparison gets even more impressive. This clearly

shows two important points: a suitable event queue is essential for NSM
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Figure 3: Execution times for the Molecule Generator model. (a) Results

for a model with 106 C particles in the central sub-volume, the diffusion

constant DA varies from 2 to 10 and the model has a size of either 53 and

113 sub-volumes (size). The simulation end time has been set to 3.0 s. (b)

The same setup as in (a), with the amount of C particles varied between 103,

104, and 105.

efficiency, and not re-validating runtime performance with different imple-

mentations may introduce a strong bias to any performance comparison for

this family of algorithms. For the simulation setups given above (and almost

all others) we found the MListRe event queue to deliver the best results.

Finally, figure 3a also shows that the performance of Sτ strongly de-

pends on the model size: the Sτ run times between otherwise equal model

setups having 53 or 113 sub-volumes differ significantly. Apart from that,

the general trend is that increasing DA also increases the run times of all

algorithms — this is straightforward, as an increased diffusion rate leads

to more events within the same simulation time span. The diffusion rate

dli(X) = 2nDixl,i/λ
2
sv does not only depend on Di, but also on a) the side
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length of a sub-volume and b) the number of particles inside it. To observe

how the algorithms perform when faced with different diffusion rates, we

varied two of these values and left λsv unaltered.

After observing the favorable run times of the new Sτ algorithm, it may

seem safe to move forward and check its accuracy with respect to NSM. How-

ever, the point of experimentally studying a new algorithm is to explore the

regions in the problem space where it is beneficial — delineating them implies

to also find the regions where an algorithm performs worse than its competi-

tors. Figure 3b shows the run times for the same setups of the Molecule

Generator model, but now varying the number of C particles from 103 to

105 (instead of 106, as in fig. 3a). The results for DA ∈ {4, 6, 8} are similar.

Here, it becomes apparent that Sτ does not always outperform NSM: indeed,

it only does so when applied to relatively small (53 SVs) Molecule Generator

models that contain many particles (> 105). Changing the diffusion constant

DA seems to have less impact on relative algorithm performance. It can also

be seen that the impact of the event queue on NSM performance grows with

model size, i.e., the difference between best and worst NSM simulation setup

increases. Also note that for some model setups (|C| = 1000, size = 113)

NSM is even faster than GMPM, although it does not use any approxima-

tions. This rather counter-intuitive finding again illustrates the importance

of model features. Figure 3b also backs up what figure 3a already suggested,

i.e., experiments that do not consider the event queue dependency of NSM

are not meaningful: although the best Sτ setup outperforms the worst NSM

setup in five out of twelve problems, it is in turn outperformed by the best

NSM setup in three of these problems.
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Figure 4: Sorted speed-ups attainable per algorithm for 79 Molecule Gener-

ator and Radial model set-ups. Note the different scales of the logarithmic

y-axes.

Of course, the design space of simulation setups must not only be explored

for NSM, but also for GMPM and Sτ . We analyzed the potential speed-up per

reaction-diffusion algorithm, i.e., the execution time ratio between its fastest

and its slowest simulation setup. This was done for 79 model setups of the

Molecule Generator and Radial models; the results are shown in figure 4.

The plots of the algorithms vary strongly from each other. GMPM run time,

for example, does not depend strongly on the event queue that is used — it

access it only infrequently and the performance difference between the best

and the worst simulation setup with GMPM was usually less than 10% of

the fastest execution time. For the problems we considered, GMPM with

the TwoList queue performs best in ca. 60% of all setups; MListRe was

second best (being optimal for ca. 20% setups). NSM, in contrast to GMPM,

was again shown to be very sensitive to the choice of event queue (cf. fig 3a

and 3b). For several models, selecting a proper event queue sped up execution

more than 50 times. Here, the MListRe queue almost always worked best

(≈ 94%) and was very close to the optimum in all other cases. We therefore
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restricted the design space explored in the following experiments to the NSM

and GMPM setups that use the MListRe queue; for both algorithms it

performs well on all model setups.

For Sτ , figure 4 shows that there are some cases in which its algorithm

parameters have a huge impact on overall performance, leading to speedup

higher than 20 — but for most cases the achievable speed-up is below 8. We

further analyzed the impact of the individual parameters nc, ε, NSSA: of the

70 model setups for which the best Sτ setup needed more than 1 second to

simulate, the optimal simulation setup was configured with nc = 2 in 76%

of the cases and with nc = 10 in 21% of the cases. Hence, there seems to

be a certain model property that makes choosing a large or small nc value

advisable. Further, we found out that the choice of ε has little impact on

runtime performance: e.g., although ca. 84% of the best Sτ setups had ε

set to 0.03, this is also true for the worst 70 % percent. The run times for

a single model setup usually cluster around the different nc values only. As

we could neither make out any impact from NSSA, we restrict the number

of simulation setups for Sτ to four: a default one with nc = 10, ε = 0.03,

and NSSA = 10.0, and one adjusted setup for each parameter, i.e., one with

nc = 2, one with ε = 0.05, and one with NSSA = 50.0. All in all, we now

have reduced the design space from over 200 simulation setups to just six:

NSM + MListRe, GMPM + MListRe, and the four Sτ setups mentioned

above.

Figure 5 shows algorithm performance on the Protein Phosphorylation

model, where Sτ is clearly not the best choice. It barely manages to finish

in twice the time that NSM execution requires. Here, GMPM is the fastest

27



size

DP

P

113

102

102

213

102

102

113

102

103

213

102

103

113

10
102

213

10
102

113

10
103

213

10
103

113

1
102

213

1
102

113

1
103

213

1
103

0

100

200

300

400

500

600

R
un

ti
m

e
[s

]

* * * * * * * * *

best GMPM best NSM best Sτ

Figure 5: Algorithm performance on different set-ups of the phosphoryla-

tion model. Similar results were obtained for |K| = |Ph| = 100 instead of

1000. Simulation times vary across model set-ups, as their complexity differs

strongly (they have been calibrated automatically [10] to let NSM run for

≈ 300s, model setups with d = 1, P = 100 where so easy that even simulating

until time 100 did not impose greater load for NSM). Unfinished executions

were aborted after 10 minutes.

algorithm by far. While the various setups of the Phosphorylation model in-

dicate where Sτ ’s performance is sub-optimal, algorithm performance on the

Radial model is particularly interesting because it contains suitable scenarios

for both NSM and Sτ . As figure 6a shows, both algorithms exceed the max-

imum allowed run time, and in both cases the respective other method was

faster by roughly one order of magnitude. Again, Sτ could gain significant

speed-up (over 47 in one case) when applied to small- and medium-sized

models — but only if there are sufficiently many particles. It performed

worst on models with a high number of sub-volumes. Similar results can be

observed for the second variant of the Radial model; a subset of the results

is depicted in figure 6b.
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Figure 6: (a) Algorithm performance on different set-ups of the Radial model.

Sτ outperforms NSM on small to medium models with sufficiently many

particles. The simulation end time was set to 5 s. (b) Algorithm performance

on different set-ups of the Radial 2 model.

Accuracy. One conclusion from the last paragraphs is: the GMPM is almost

always the fastest algorithm, leaving its competitors often far behind. But

the fastest algorithm is worth nothing if it fails to produce accurate results.

Table 1 puts the results from the execution speed analysis into perspective.

Using the test procedure introduced in section 4.1, the accuracy experiments

show that, at least for the analyzed model setups, GMPM is far from captur-

ing the spatial particle distribution accurately. The null hypothesis, stating

that both NSM and GMPM sample from the same underlying distribution, is

rejected for a significance level α = 0.05 in each experiment. While GMPM

fails to capture the spatial distribution for every test model, the spatial τ -

leaping algorithm shows good performance, except for the molecule genera-

tor model. For the two radial variants and the phosphorylation model, Sτ

matches the NSM outcome much better than its competitor.
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GMP τ -leaping

Model Time X2
t X2

a pa X2
a p

Radial, DA = 10, XA(0) = 104

0.1 168.84 923.4 0 162.97 0.49

0.5 340.9 951.37 0 334.11 0.21

0.9 354.02 418.17 0 343.18 0.43

Radial, DA = 1, XA(0) = 105

1 408.05 1657.71 0 401.23 0.47

3 774.95 2652.98 0 770.54 0.13

5 867.65 2662 0 855.94 0.39

Radial var. 2, DA = 10, DB = 1,

XA(0) = 105, XB(0) = 103

0.1 1782.16 3129.69 0 1768.64 0.58

0.2 1875.26 3183.37 0 1866.51 0.33

0.3 1887.16 3127.39 0 1898.22 0.02

Phospho, DP = DPP = 10,

XP (0) = 1.21 · 105,

XK(0) = XPH(0) = 100

0.1 738.18 1099.98 0 732.85 0.19

0.5 1112.22 1233.13 0 1099.12 0.34

0.9 1240.17 1317.1 0 1218.55 0.77

MolGen, DA = 10, XC(0) = 106

0.1 146.91 371.06 0 761.47 0

0.5 699.19 769.56 0 815.94 0

0.9 967.69 989.91 0 960.96 0.21

Table 1: Accuracy results for five different reaction-diffusion models, eval-

uated at three time points each. The column X2
t lists the threshold values

calculated during calibration; these are tested against the control values given

in column X2
a . The p-value for each model-algorithm combination is calcu-

lated using a significance level of α = 0.05.

Performance Prediction. The accuracy results motivate to refocus on the run

time performance of NSM and Sτ , as GMPM may often be too inaccurate.

We therefore try to predict which algorithm is faster by applying the J48

decision tree learner from the WEKA machine learning toolkit [36, p. 159 et

sqq.]. The learner is provided with features of the investigated model setups

and their performance outcome (i.e., “NSM better” or “Sτ better”). The

generated tree decides whether the best Sτ setup outperforms the best NSM
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Figure 7: A decision tree to decide whether Sτ or NSM is faster. The root

node is placed at the upper left corner. The tree misclassifies 12 of the 155

models (ca. 8%, checked with 10-fold cross-validation [36, p. 125]). The

cases where Sτ is classified to be better are marked red, with the number of

correctly classified examples given in parentheses.

setup on a model with given features. As shown in figure 7, the regions

where Sτ outperforms NSM are characterized by small to medium numbers

of sub-volumes (L ≤ 113) and relatively many particles (P̄ > 272.7). This

corresponds to our manual interpretation (e.g., see fig. 6a). Note that the

numbers given in the tree (e.g., “L ≤ 113”) do not denote exact crossing

points, as we conducted factorial experiments on the models: maybe Sτ also

performs better for L = 123; we only checked for L ∈ {53, 113, 213}.
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5. Discussion and Conclusion

We discussed the spatial leap method Sτ and compared its performance

to existing algorithms in an extensive performance analysis. The spatial

simulation algorithms considered in this study all have their strengths and

weaknesses. GMPM’s execution speed, for instance, was excellent for almost

all model setups we considered; yet it lacks the accuracy of the other methods.

In contrast, the NSM can be considered as being exact but slow for larger

models. The performance of Sτ lies somewhere inbetween these two; it is

generally more accurate than GMPM, but also takes longer to finish a single

run. On the other hand, Sτ clearly outperforms NSM on various model

setups (we observed a speed-up of up to 47), while still producing comparable

results. The performance analysis allowed us to act upon the statements we

made above: we showed that Sτ is unsuitable if a model exhibits certain

parameters, e.g., only few particles are present.

Obtaining such results requires powerful tools both for recording the nec-

essary data and for finding out which algorithm dominates in which region of

the model feature space. By relying on plug-ins that can be easily exchanged

even at run time, JAMES II allows to analyze an aspect that is usually ne-

glected in simulator development and analysis: the interdependency between

host and sub-algorithm(s). A striking example for this is the impact of the

event queues on the overall execution speed for the NSM: simply replacing a

queue could speed up the simulation by orders of magnitude (or do the op-

posite). But similar to the selection of a host-algorithm, a general statement

about what queue implementation should be used cannot be made. Instead

of picking real-world models for benchmarking, we purposefully designed ar-
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tificial benchmark models that can be parameterized to capture a wide range

of model characteristics, found in a wide range of systems. One advantage of

this approach is the degree of control and knowledge an algorithm developer

has when performing a performance study.

Future work. Our study hints at various directions for future research. The

first one is a more in-depth exploration and consequently refinement of the Sτ

algorithm. As an example, there might exist a state-dependent tipping point

for some models, i.e., when the model reaches a certain state NSM should be

replaced by Sτ . Secondly, the performance evaluation of Sτ is not exhaustive,

although we evaluated more than 150 models and over 200 simulation setups:

we did not consider the impact of different hardware architectures, the Java

virtual machine, or the operating system. Finally, the accuracy analysis is

still a compute-intensive and challenging task for which advanced statistical

techniques will be explored in the future.
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