
Towards Semantic Model Composition via Experiments
[Preprint, final version is provided here.]

Danhua Peng
Albert-Einstein-Str. 22
University of Rostock

18059 Rostock, Germany
danhua.peng2@uni-

rostock.de

Roland Ewald
Albert-Einstein-Str. 22
University of Rostock

18059 Rostock, Germany
roland.ewald@acm.org

Adelinde M. Uhrmacher
Albert-Einstein-Str. 22
University of Rostock

18059 Rostock, Germany
adelinde.uhrmacher@uni-

rostock.de

ABSTRACT
Unambiguous experiment descriptions are increasingly re-
quired for model publication, as they contain information
important for reproducing simulation results. In the con-
text of model composition, this information can be used to
generate experiments for the composed model. If the orig-
inal experiment descriptions specify which model property
they refer to, we can then execute the generated experiments
and assess the validity of the composed model by evaluat-
ing their results. Thereby, we move the attention to de-
scribing properties of a model’s behavior and the conditions
under which these hold, i.e., its semantics. We illuminate
the potential of this concept by considering the composition
of Lotka-Volterra models. In a first prototype realized for
JAMES II, we use ML-Rules to describe and execute the
Lotka-Volterra models and SESSL for specifying the origi-
nal experiments. Model properties are described in contin-
uous stochastic logic, and we use statistical model checking
for their evaluation. Based on this, experiments to check
whether these properties hold for the composed model are
automatically generated and executed.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis—Semantic Composability ; I.6.7 [Simulation and
Modeling]: Simulation Support Systems—Model Composi-
tion, Simulation Experiments

Keywords
Reuse of models; Simulation Experiments; Validation; Se-
mantic Composition

1. INTRODUCTION
Model composition holds the promise of easily assembling

complex models from predefined building blocks. Gener-
ally, a component is developed as a replaceable part of a
system, to be used in unforeseen contexts and for different

This is a pre-print of a SIGSIM-PADS’14 paper published by the ACM. The original
version can be found here.
SIGSIM-PADS’14, May 18–21, 2014, Denver, CO, USA.
.

purposes [39]. Appropriate interface definitions are crucial
for this, as they shall provide just the information necessary
to (re-)use the component [4]. For many technical areas,
libraries of model components have been proven highly ef-
fective [8]. Traditionally, model components are viewed as
portable building blocks [39] and model composition refers
to combining the inputs and outputs of the model compo-
nents [1]. In non-technical areas like computational biol-
ogy, however, no libraries of model components could be
established yet. Nevertheless, there are public libraries for
complete models [18], which are frequently reused as a start-
ing point for model extension or composition [29]. Different
approaches towards composing models are distinguished in
this context [36]. For example, Fusion merges existing mod-
els into one model, whereas Aggregation creates models by
composing models via interfaces.

Unlike model components, which are designed to work in
an “unforeseen” context, it is clear that a model designed to
answer a specific question of interest — and thus being val-
idated with this question in mind — is not simply reusable
in an any context, i.e., cannot simply be composed with
another model [3, 25]. Various levels of composability can
be distinguished [40], often summarized as syntactic and se-
mantic composability [27]. Semantic composability, which
also refers to a model’s underlying abstractions and assump-
tions (this is called conceptual composability in [40]), is
particularly challenging to ensure, as these assumptions are
rarely stated explicitly and exhaustively. In the following,
we try to circumvent this problem by looking at how those
assumptions are reflected by simulation experiments and
their outcome.

Experiments and their results play a key role in refining
and successively enriching models, which is also reflected in
workflows that intertwine phases of experimenting and mod-
eling, e.g., [32]. These experiments shall serve as a starting
point to tackle the issue of conceptual interoperability and,
more generally, the support of modeling by automatic ex-
perimentation. Thus, our study does not focus on the au-
tomatic composition of models and the different manners in
which composition can be done, but rather on how to auto-
matically provide important feedback to the user during a
modeling process that includes the reuse of different mod-
els, i.e., to check whether properties that hold for the reused
models also hold for the composed one.

Throughout the paper, we will use Lotka-Volterra models
as a running example to illuminate our approach.

http://dx.doi.org/10.1145/2601381.2601394
http://dx.doi.org/10.1145/2601381.2601394

2. EXAMPLE: COMPOSITION OF LOTKA-
VOLTERRA MODELS

The Lotka-Volterra model, one of the classic predator-
prey models, is a well-known example of a mathematical
model of population biology (as described in [30], it was
first presented in [19, 41]). It describes the interaction be-
tween populations, i.e., predators and prey, in a rather ab-
stract manner. Here, we focus on a specific variant of the
Lotka-Volterra model, where one predator species hunts one
prey species and the prey depends on an unlimited supply
of food. To avoid an exponential growth of the prey popu-
lation in the absence of predators, competition among prey
is also considered. Let N1 denote the prey population size
and N2 denote the predator population size, so that the de-
terministic equations are (cf. [30, p. 176]):

dN1/dt = N1 ∗ (b− k ∗N1 − a ∗N2) (prey)

dN2/dt = N2 ∗ (−d+ c ∗N1) (predator)

where b is the birth rate of the prey, d is the mortality
rate of the predator, a and c are the interaction coefficients,
and k is the competition coefficient.

Different questions can drive the modeling and simulation
of prey and predator systems. For example, one may be
interested in the stationary states of the system, e.g., the
“coexisting state”, where both prey and predator popula-
tions exist, the “prey state”, where the predators die out
and only prey survive, or the “empty state”, where preda-
tors first extinguish the prey population and afterward die
out [6]. Similarly, it may also be interesting to compare the
size of the predator and prey populations. These questions
are reflected in different hypotheses, i.e., under which cir-
cumstance, e.g., parameter values and initial state, does a
certain statement or property hold.

Assuming we develop a set of Lotka-Volterra models, each
characterized by some hypotheses and experiments: what
properties of the composed model can be deduced? For ex-
ample, if we have two Lotka-Volterra models and for each
of those the hypothesis “coexisting state” has been shown to
hold, can we assume that the hypothesis still holds in a com-
posed model where two predator species hunt the same prey,
or two prey species are hunted by the same predator? What
does a violation, i.e., a falsified hypothesis, tell us about the
conceptual validity of our composition?

In the following, we approach these questions based on
concrete simulation studies that focus on three properties.
Two properties, “coexisting state” and “empty state”, are
commonly checked in Lotka-Volterra models [6]. The third,
“recovery comparison”, states that the prey population will
recover faster than the predator population if both popula-
tions has been disturbed significantly, i.e., both populations
are quite small.

2.1 Ingredients
To test our approach, we need a modeling formalism, an

execution algorithm, a way to describe simulation experi-
ments, and a way to describe the model properties that shall
be satisfied.

2.1.1 Model Description and Execution
We use ML-Rules [21] to describe the Lotka-Volterra mod-

els, which is a rule-based, multi-level modeling language for

(cell) biological systems that has been realized for JAMES II
[16]. ML-Rules can describe a dynamic hierarchy of nested
species, and also supports downward and upward causation
across different levels of the hierarchy. For each rule, ar-
bitrary reaction rate kinetics using any kind of mathemat-
ical expression and constraints are allowed to specify state
transitions in a flexible manner. Several other modeling for-
malisms supported by JAMES II would also allow to define
these comparatively simple models. However, as we aim
at applying our technique to concrete cell biological model-
ing and simulation studies, e.g., to extend the Wnt-pathway
model from [22] to include membrane dynamics, we use ML-
Rules here as well. We use the reference stochastic simula-
tion algorithm from [21], which is based on Gillespie’s ap-
proach [11], to simulate the models (instead of the faster but
approximative tau-leaping variant [15]).

2.1.2 Experiment Description
SESSL (Simulation Experiment Specification via a Scala

Layer) is an embedded domain-specific language for simu-
lation experiments [9]. It serves as an additional software
layer between users and simulation systems, facilitates the
reuse and execution of simulation experiments, and offers
various features, e.g., for experiment design and simulation-
based optimization. As already mentioned, a variety of ex-
periments are executed during the development of a sim-
ulation model, e.g., sensitivity analysis or parameter es-
timation [32]. The user might wish to store experiments
and results together with the model. Models can be anno-
tated with SESSL specifications, which can also be gener-
ated. So far, SESSL was focused on the execution of ex-
periments, similar to other approaches for simulation exper-
imentation (e.g., NEDL [14]). It did not allow to specify
which model properties shall hold, i.e., what the experiment
results should look like. However, an explicit and formal
description of the expected outcome is required for our ap-
proach.

In general, the motivation of simulation experiments is
rarely stated in a formal manner. This is in contrast to veri-
fication and model checking approaches, where the property
of the system to be checked needs to be formally defined [24].
Consequently, experiments that combine techniques from
simulation and verification, e.g., in statistical model check-
ing, include explicit formal statements about the properties
of the trajectories that are checked. Nevertheless, SESSL
is easy to extend, so we choose to use it for experiments
description.

2.1.3 Property Description
Linear Temporal Logic (LTL) is widely used to check the

properties of individual trajectories [10, 47], and thus al-
lows to express a broad range of dynamic model properties.
To check an output trajectory π, we rely on a JAMES II-
based reimplementation of the model-checking algorithm in-
troduced by Fages et al. [10]. The original algorithm cap-
tures the following operators of LTL: X (next), G (global),
F (finally), and U (until). We extended the algorithm to
include the R operator (release) as well (see [2]). However,
LTL might not suffice to describe all properties of interest.
Thus, we allow to express custom properties via predefined
predicates, which must also provide the corresponding algo-
rithms to check them on a trajectory.

ML-Rules is based on Continuous-Time Markov Chain
(CTMC) semantics, so that the results are stochastic and
multiple replications are required for analysis. For some
replications a property may hold, for others it may not
hold. Thus, we need to express our expectation regarding
replications with probabilities. In analogy to Continuous
Stochastic Logic (CSL) [46, 35], which has been proposed as
a formalism for expressing properties of CTMC, we define
Pr1p(φ) with 1∈ {<,≤, >,≥} and an initial state s so that

s � Pr1p(φ) ⇐⇒ Prob(π ∈ Path(s)|π � φ) 1 p (1)

We extended SESSL to support the definition of such
probabilistic statements, where φ could be an LTL formula
or a predefined predicate. In contrast to [46, 35], however,
we currently do not support nested probabilities.

Statistical model checking relies on executing stochastic
models, and on hypotheses testing. Consider the null hy-
pothesis H0 that some property does not hold in s, and the
alternative hypothesis H1 that the property does hold in s:
the probability to accept H1 although H0 is true (false pos-
itive) should be at most α ∈ (0, 1], and the probability to
accept H0 although H1 is true (false negative) should be at
most β ∈ (0, 1]. α and β are error bounds for statistical
model checking, and as it is quite difficult to ensure a low
probability for both types of errors, typically an indifference
region of size 2δ is defined. Different approaches exist to
minimize the amount of needed replications (e.g., see [45]).
For our proof of concept, we follow the approach outlined
in [35, p. 5–6] and find the smallest number of replications,
n, so that the probability of false positives (false negatives) is
smaller than α (β) when assuming a binomially distributed
number of successful checks for φ, with parameters n and
p− δ (n and p+ δ). Again, p denotes the assumed probabil-
ity (see Equation 1).

2.2 The basic Lotka-Volterra Model
Figure 1 shows the parameters, the species, the initial

state, and the reaction rules of a Lotka-Volterra model de-
fined in ML-Rules. Please note that predators and prey
are modeled as populations whose individuals encounter the
events of death or reproduction stochastically. In the origi-
nal Lotka-Volterra model equations, five parameters (i.e., a,
b, c, d and k, see Section 2) as well as the initial predator
and prey population sizes can be set by the modeler. To
simplify the example, we reduced the parameter space and
thus our ML-Rules models do not distinguish between the
interaction coefficients, so both have the same value (a = c),
and we keep the competition coefficient k = 0.002 constant.

A model with the fox being the predator and the rabbit
being the prey shall illuminate the experiments. As a first
property, we tested the “coexisting state”, i.e.,

G(#Rabbit > 0 ∧#Fox > 0).

We assume that both predators and prey will survive, with
a probability of 0.8, i.e.,

s � Pr≥0.8(G(#Rabbit > 0 ∧#Fox > 0)).

The experiment is specified in SESSL (see Figure 2) and
executed with JAMES II. The parameter value ranges for
which the simulation output fulfills this statement are:

1 a: 0.014;
2 b: 0.6;
3 d: 0.7;
4 k: 0.002;
5 nFood:100;
6 nPredator:10;
7 nPrey:100;
8 Food();
9 Predator();

10 Prey();
11

12 >>INIT[(nFood) Food + (nPredator) Predator + (nPrey) Prey];
13

14 // Prey reproduces
15 Food:f + Prey:x -> Food + 2 Prey @b*#x;
16 // Prey dies by competition
17 Prey:x + Prey:z -> Prey @k*#z*#x;
18 // Predator reproduces based on successful hunting
19 Predator:y + Prey:x -> 2 Predator @a*#y*#x;
20 // Predator dies
21 Predator:y -> @d*#y;

Figure 1: A Lotka-Volterra model described in ML-
Rules

1 val exp = new Experiment with Observation with Hypotheses {
2 model = "file-mlrj:/./LotkaVolteraFoxRabbit.mlrj"
3 scan(
4 "a" <∼ range(0.010, 0.001, 0.015),
5 "b" <∼ range(0.6, 0.1, 1.0),
6 "d" <∼ range(0.1, 0.1, 1.0),
7 "nPrey" <∼ range(100,100),
8 "nPredator" <∼ range(10,10))
9 stopCondition = AfterWallClockTime(minutes=2) or

AfterSimTime(10)
10 observe("Rabbit","Fox")
11 observeAt(range(0.0, 0.1, 10))
12 assume(
13 Pr(G(variable("Rabbit") > 0 and variable("Fox") > 0)) >= 0.8)
14 }

Figure 2: SESSL experiment specification to test
the “coexisting state” hypothesis in a basic Lotka-
Volterra model.

a : 0.010− 0.015, b : 0.6− 1.0, d : 0.5− 1.0

nPrey = 100, nPredator = 10

These parameter ranges define the initial states s (see
Equation 1) for which the property has been shown to hold
with the given probability, by statistical model checking.
Please note the parameters for the initial values of prey
(nPrey) and predators (nPredator) have been fixed. For
simplicity, we set the probability p in all our experiments to
0.8.

Similarly, for the properties “empty state” and “recovery
comparison”, experiments using the same model are exe-
cuted. For the “empty state” (i.e., the prey dies out first,
then the predators die out), the property φ can be expressed
in LTL as

((#Prey = 0) R (#Predator > 0)) ∧ F (#Predator = 0).

Taking the probability (and multiple replications) into ac-
count, the property which needs to be tested is denoted as
Pr≥0.8(φ). In SESSL, this can be expressed as

assume(
Pr(((Negation(variable("Rabbit") > 0)) R (variable("Fox") > 0)

) and (Negation(G(variable("Fox") > 0)))) >= 0.8)

From the experiments, we learn that this property holds
for the initial states s where

a : 0.050− 0.070, b : 0.1− 0.4, d : 0.7− 1.0

nPrey = 100, nPredator = 30

Both, property and parameter assignments, together form
our hypothesis regarding the model behavior.

The“recovery comparison”property — if both populations
are disturbed at the beginning to have the same small size,
the prey population will recover faster — is difficult to be
expressed in LTL. Therefore, this property is currently im-
plemented as a predefined predicate (see Section 2.1.3). The
initial sizes of both predator and prey population are set to a
common low value. In principle, the predicate is evaluated
by comparing the time points where the first peak occurs
in each population. The earlier the first peak occurs, the
faster the population has recovered. However, the popu-
lation trajectories contain random fluctuations, and many
sophisticated methods have been developed to find optima
in time series with noise (e.g., [34, 7]). We use a more sim-
ple approach, which may not be as rigorous but appears to
be sufficient for our purpose. In our method, a certain time
point is selected and only the time points between the initial
and the selected time point are considered. From those, the
time point with the maximum value is identified, and the
recovery rate is calculated as the slope between the initial
value and this maximum. If the maximum equals the ini-
tial value, then the recovery rate is calculated as the slope
between initial and selected time point. Although such a
manual implementation of predicates is not too difficult in
JAMES II, it is not acceptable for all users. Therefore, fu-
ture work will be aimed at extending the language constructs
currently used for describing properties of trajectories.

Again, experiments are executed to check the above prop-
erty. The hypothesis that the probability of The property
“recovery comparison” is satisfied with a probability larger
than 0.8 for the following initial states:

a : 0.010− 0.028, b : 0.6− 1.0, d : 0.5− 1.0

nPrey : 10, nPredator : 10

2.3 Composing Lotka-Volterra Models
Given two Lotka-Volterra models as shown in Figure 1,

i.e., each having two species, these can be composed in three
ways: the same prey composition, the same predator com-
position and the food chain composition.

In the same predator composition, one predator species
and two prey species constitute the composed model. The
predator hunts on both prey species. This type of compo-
sition requires that the predators in the two model compo-
nents are the same. Similarly, in the same prey composition,
there are two predator species and one prey species in the
composed model, and both predator species hunt on the
same prey. In the food chain composition, the prey in one
reused model has the role of the predator in the other model
component. Thus, in the composed model, it is a food chain
where one species functions as both, prey and predator.

1 Food:f + Rabbit:x -> Food + 2 Rabbit @b*#x;
2 Rabbit:x + Rabbit:z -> Rabbit @k*#z*#x;
3 Wolf:y + Rabbit:x -> 2 Wolf @a*#y*#x;
4 Wolf:y -> @d*#y;
5

6 Fox:y + Rabbit:x -> 2 Fox @a*#y*#x;
7 Fox:y -> @d*#y;

Figure 3: An example of the same prey composition.

1 Food:f + Rabbit:x -> Food + 2 Rabbit @b*#x;
2 Rabbit:x + Rabbit:z -> Rabbit @k*#z*#x;
3 Fox:y + Rabbit:x -> 2 Fox @a*#y*#x;
4 Fox:f -> @d*#f;
5

6 Wolf:w + Fox:y -> 2 Wolf @a*#y*#w;
7 Wolf:w -> @d*#w;

Figure 4: An example of the food chain composition.

Similar to the model in Figure 1, we developed and exper-
imented with Lotka-Volterra models for foxes and rabbits,
wolves and rabbits, wolves and foxes, and wolves and sheep.
Now we wish to compose those. As outlined in [26], the
modeler needs to decide during the composition whether a
species with the same name refers to the same species in the
composed model. If not, renaming is required. For exam-
ple, if the wolves were hunting another kind of rabbit, its
name needs to be changed. Besides renaming species, the
modeler could also change the configuration of parameters
during composition. In the food chain composition, for ex-
ample, the species that is now both prey and predator may
need a readjusted initial population size in the composed
model.

We create three composed models to evaluate our ap-
proach, one for each type of composition. An example of the
same prey composition, in which both wolves and foxes hunt
rabbits, is shown in Figure 3. An example of the food chain
composition, in which wolves hunt foxes and foxes hunt rab-
bits, is shown in Figure 4. Additionally, we created a same
predator composition, where the composed model contains
one predator that feeds on two prey, i.e., wolves hunt both
sheep and rabbits.

2.4 Generating Experiments for Hypotheses
As mentioned before, we consider three properties to be

checked (see Section 2.2) and three types of composition (see
Section 2.3). Two basic two-species Lotka-Volterra mod-
els (see Section 2.2) are reused for each composition. For
both models, all three hypotheses are checked, each by its
corresponding experiment. All of these hypotheses shall be
checked again for composed model. To do so, experiments
for the composed model will be generated, based on the ex-
periments that were used to check the hypotheses for the
reused models.

Each hypothesis consists of two parts, i.e., parameter value
ranges and the property that shall hold (see Section 2.2).
The parameter value ranges are reflected by the parameter
configuration of the corresponding experiment, whereas the
property is a formal statement that depends on the names of
model variables (e.g., species names, species population and
so on). As described before, these names may be changed by

Model 1

Model 2

HypA HypB

HypC HypD

ExpA ExpB

ExpC ExpD

Composition Composed
Model

Experiment
Generation
& Exection

Composition
Description κ

test

Hyp’A

Exp’A

Hyp’B

Exp’B

Hyp’C

Exp’C

Hyp’D

Exp’D

Figure 5: Our overall approach considers the hy-
potheses of the individual models (colored boxes),
as well as the simulation experiments to check them,
and supports semantic model composition by first
adapting them to the composed model (Hyp′A etc.,
right-hand side) and then testing them. The user is
notified whenever a hypothesis does not hold for the
composed model (e.g., Hyp′C , see red outline).

the modeler during composition. Therefore, the hypotheses
to be checked need to be refined according to those changes.

No species need to be renamed in our example, but the pa-
rameter value ranges need reconsideration when generating
experiments for the composed model (see Section 3). For the
food chain composition, we also adjusted the initial popula-
tion size of the fox, which is both the prey and the predator
in this case. Other details of the experiment setup, such as
the simulation stopping criterion, will be copied from the ex-
periments that were defined on the reused models. The hy-
potheses we consider refer to probabilities, so we follow the
approach outlined in Section 2.1.3 to determine the number
of necessary replications.

With all this information, we can now execute the newly
generated simulation experiments, to check the hypotheses
from the reused models on the composed model. We describe
our concept and algorithms for this task in the following.

3. THE CONCEPT
The main idea we put forward in this paper is to support

semantic composition by automatically adapting and check-
ing hypotheses that are defined on the reused models. To
do so, our approach relies on additional information in form
of a composition description (see Section 3.2.1). It is then
able to identify hypotheses that do not hold in the composed
model (or, in case of probabilistic statements, are very un-
likely to hold). Figure 5 gives an overview of the general
approach.

3.1 Basic Notation
We assume that each model m has an interface, compris-

ing a set of parameters and a set of interaction points [31].
Both are defined by their names and their domain, e.g., the
set of parameters P (m) = {pi|i = 1, . . . , n} with pi being a
tuple (name,Di), where Di is the domain of the parameter’s
possible values. Similarly, the set of interaction points of a
model is defined, i.e., IP (m) = {ipi|i = 1, . . . , v} with IPi

being a tuple (name,Di). Interaction points are used for ag-
gregating models [29] and for collecting data from the model.
Please note that all variables of a model become interaction
points when using exchange formats like SBML [17].

Let A = D1 × . . . × Dn be the set of all permissible pa-
rameterizations of the model m. We call an element a ∈ A

an assignment, and the finite subset A ⊆ A of assignments
for which the model has been simulated the experiment as-
signments.

We consider the simulation of a model to be a black box.
Given a certain assignment a ∈ A, and an experiment exp(a),
it will generate output in the form of Y (a).

Because simulation can be stochastic, there may be mul-
tiple sets of finite trajectories Ti per observation: Y (a) =
{Ti, i = 1, . . . , k}. Each trajectory set Ti consists of all ob-
served data from a single run, in the form of trajectories tri,
i.e., Ti = {tri, i = 1, . . . , l}. We further assume each trajec-
tory tri consists of a unique name, e.g., a biological species
to be observed, and a sequence of time-stamped data di:

tri = (name, (t1, d1), . . . , (tz, dz)).

Each trajectory set Ti should also contain corresponding
data for each interaction point, i.e.,

∀(nameip, Dip) ∈ IP (m) : ∃tri ∈ Ti,

name = nameip and dj ∈ Dip j ∈ 1 . . . z.

So far, we have discussed parameter assignments and the
output of the experiments in terms of trajectories, which de-
pends on these assignments. Now, we define the properties
of a model’s behavior. We use a variant of the continu-
ous stochastic logic (CSL) [46, 35] for the stochastic case,
which works on multiple replications and where a property
expressed in LTL is checked for each replication (see Sec-
tion 2.1.3). For a certain statement or property Pr1p(φ)i,
a given assignment set Ai ⊆ A defines for which parame-
ter assignments Pr1p(φ)i is true. Together, this yields a
hypothesis hi = 〈Ai, P r1p(φ)i〉, i.e.,:

∀a ∈ Ai : 〈a, expi(a)〉 � Pr1p(φ)i. (2)

This can be evaluated with statistical model checking, i.e.,

〈a, exp(a)〉 � Pr1p(φ) ⇐⇒ Prob(π ∈ Path(s)|π � φ) 1 p

where π represents the Ti, s is the initial state of the model
(determined by a and exp(a)), and Y (a) ⊆ Path(s). Please
note that each hypothesis hi has a corresponding experi-
ment description expi. In the following, we therefore sim-
plify Equation 2 to the shorthand notation Ai � Pr1p(φ)i.

The above definition of a hypothesis makes the goal of its
corresponding experiment explicit. Statements about the
behavior of the model and information about configurations
(in terms of parameter assignments) become the focus of in-
terest. The above argumentation neglects information that
is essential for reproducing simulation results (like stop cri-
teria, the simulator to use, etc.) which are part of specifying
an experiment, exp(a). However, we build on this informa-
tion when executing the experiments to test the generated
hypothesis for the composed model (see Section 2.4). Fi-
nally, we assume that each reused model m is annotated
with a set of hypotheses Hm = {hi, i = 1, . . . , q}.

3.2 Experiment Generation

3.2.1 Basic Algorithm
We assume that a composed modelmc is created by reusing

two models, m1 and m2, and that the type of composition is

Algorithm 1 Basic algorithm.
mc: composed model
Hm1 : Hypotheses defined for model m1

Hm2 : Hypotheses defined for model m2

κ: composition description
u: user preferences

1 // Generate possible hypotheses
2 Hmc ← createHypotheses(Hm1

, Hm2
, κ, u)

3 // Return set for successful hypotheses
4 H+ ← ∅
5 // Return set for failure hypotheses
6 H− ← ∅
7 // Check hypotheses in composed model mc

8 for each hypothesis h = Ah � Pr1p(φ)h ∈ Hmc
9 A← sampleAssignments(h, κ, u)

10 A+ ← ∅
11 A− ← ∅
12 for each assignment a ∈ A
13 expa ← generateExperiment(mc,a,exph,Pr1p(φ)h)
14 Y (a)← run(expa)
15 result← check(Pr1p(φ)h, Y (a))
16 if result is invalid
17 switch(u.returnPreference(h))
18 case strict: return error
19 case record: A− ← A− ∪ a
20 continue
21 end
22 else
23 A+ ← A+ ∪ a
24 end
25 end for
26 //Add successful hypothesis:
27 H+ ← H+ ∪ {A+ � Pr1p(φ)h}
28 //Add failure hypothesis:
29 H− ← H− ∪ {A− 2 Pr1p(φ)h}
30 end for
31 return H+,H−

defined by some c ∈ C = {ci, i = 1, . . . , r}. In our example,
we distinguish the same prey, the same predator, and the
food chain composition types (see Section 2.3). Besides the
composition type, the modeler may also change the names
of some model entities, or change the value ranges of some
model parameters. For example, in the food chain compo-
sition the initial value of the species population is adjusted
during composition (see Section 2.3). These changes, along
with the composition type c, are stored in a composition de-
scription κ, which describes the overall model composition.

An additional structure for user preferences, u, allows
users to influence how hypothesis testing and hypothesis
creation are executed. This improves the flexibility of our
approach. For instance, some hypotheses must never be vi-
olated, e.g., in our example the hypothesis referring to the
“empty state” property (prey should always becomes extinct
first, followed by the predators, see Section 2.2). A viola-
tion of this hypothesis could thus be defined as an error.
On the other hand, a violation of the hypothesis referring
to the “coexisting state” property (no species becomes ex-
tinct, see Section 2.2) may even be expected in a composed
Lotka-Volterra model, and could thus be tolerated.

Algorithm 1 depicts the procedure of generating experi-
ments for the composed model, based on information about
experiments done with the reused models. The input of
the algorithm are the composed model mc, the hypothesis
sets Hm1 , Hm2 , which are defined for the two reused mod-
els m1 and m2, respectively, the composition description κ,
and the user preferences u. First of all, a hypothesis set

Hmc of the composed model mc is created by a function
createHypotheses (line 2), which will be described in al-
gorithm 2. Additionally, two hypothesis sets to record the
result of hypothesis testing, H+ and H−, are created (line
4, 6). H+ stores all hypotheses that hold for the composed
model. Similarly, if there are some assignments a ∈ A− for
which the statement Pr1p(φ)h is not true, this will be stored
in H− as A− 2 Pr1p(φ)i.

For each hypothesis h ∈ Hmc , experiment assignments A
are generated through sampling. This is implemented in a
function sampleAssignments (line 9), which takes the given
hypothesis h, the composition description κ, and the user
preferences u as input. While we currently sample uniformly
from the assignment set Ah of the given hypothesis, other
sampling methods may yield much better results. For ex-
ample, one could draw samples from nearly orthogonal latin
hypercubes (e.g., [33]), or focus on the boundaries of Ah

in the parameter space. Since larger sample sizes are com-
putationally more expensive, we expect that the quality of
the sampling method will have a large impact on the overall
performance. Therefore, users should also be able to adjust
the sampling procedure to their requirements, e.g., to gen-
erate more samples if the available hardware is sufficiently
powerful. This can be expressed via the user preferences
u. Similarly, more sophisticated sampling methods may re-
quire additional information on the actual model composi-
tion, e.g., to generate more samples for parameters shared
by both model components.

The sampling results in a set A of experiment assign-
ments. For each assignment a, the algorithm now generates
a suitable experiment expa. For this, it relies on the com-
posed model mc, the assignment a, the experiment exph
that is associated with the hypothesis h, and the statement
Pr1p(φ)h of the hypothesis h (line 8), all of which are passed
to the function generateExperiment (line 13). Currently,
this function takes an experiment specification defined in
SESSL and adapts it to the composed model and the new
assignment. Internally, this function retrieves the exper-
iment definition that corresponds to Pr1p(φ)h, which we
assume to be preserved from experiments with the reused
models m1 and m2 (see Section 3.2.2 for details). For exam-
ple, these definitions can be specified with SESSL, as shown
in Figure 2. Apart from the model to be simulated, which is
now mc, the parameters to be used, which are now defined
by a, and the number of required replications, which now
depends on α, β, and δ (see Section 2.1.3), every aspect of
the experiment can stay the same. Thus, this function sim-
ply reconfigures the corresponding experiment to work with
mc and a.

With all the details configured, the simulation experiment
expa can now be executed by invoking run (line 14). The
output of the simulation execution is a trajectories set Y (a).
Then, the statement Pr1p(φ)h will be checked against Y (a).
If the check is successful, the assignment a will be stored in
the set A+, which contains all assignments where the current
hypothesis h has been corroborated. If the check is unsuc-
cessful, i.e., the result is invalid (lines 16–22), what happens
next depends on the user preferences u. If the statement
Pr1p(φ)h does not hold for the assignment a, a user may
want to let the whole procedure fail as early as possible,
because this indicates problems in the model composition
or the reused models. On the other hand, it may also be
reasonable to check all hypotheses first, and to record which

Algorithm 2 Creation of hypotheses.
Hm1 : Hypotheses defined for model m1

Hm2 : Hypotheses defined for model m2

κ: composition description
u: user preferences

1 function createHypotheses(Hm1
, Hm2

, κ, u)
2 Hmc ← ∅
3 // Create new hypotheses on composed model mc

4 for each hypothesis h = Ah � Pr1p(φ)h ∈ (Hm1
∪Hm2

)

5 Pr1p(φ)
′
h ← renameVariables(Pr1p(φ)h, κnames)

6 Ah′ ← updateBounds(Ah, κA, u)
7 if (Ah′ = ∅)
8 switch(u.strictness)
9 case strict: return error

10 case tolerant: continue
11 case retry: Ah′ ← κA

12 end
13 end

14 Hmc ← Hmc ∪ {Ah′ � Pr1p(φ)
′
h} //Add new hypothesis

15 end
16 return Hmc

hold and which do not hold, because this could simplify the
later analysis of potential causes. Both approaches are sup-
ported by defining u.returnPreference(h) either as strict
(line 18), which fails early, or as record (line 19), which
continues the experiments.

3.2.2 Creation of Hypotheses
The creation of hypotheses is described in Algorithm 2.

This function works on the hypotheses sets of the two reused
models, Hm1 and Hm2 , and also needs the composition de-
scription κ and the user preferences u as input. It iter-
ates over all hypotheses in the two hypothesis sets Hm1 and
Hm2 (line 4). For each hypothesis h = Ah � Pr1p(φ)h,
the for-loop generates a new statement Pr1p(φ)′h and new
experiment assignments Ah′ . The new statement Pr1p(φ)′h
is generated by renaming variables, i.e., it depends on the
composition description κ (line 5, see Section 2.4). If a vari-
able name has been changed, e.g., substituted with another
name in the composed model, this is recorded in κnames.
Therefore, we apply all name changes given in κnames to
the corresponding variables in statement Pr1p(φ)h, which
then forms the new statement Pr1p(φ)h. This is handled
by the function renameVariables in Algorithm 2 (line 5).

After model composition, the experiment assignments of
the reused models and the experiment assignments of the
composed model will usually have different dimensions. One
reason for this is that parameters of both reused models are
included in the composed model. Thus, the experiment as-
signments of each original hypothesis, Ah, need to be re-
fined to suit the experiment assignment dimensions of the
composed model. This is done in a function called update-

Bounds, which takes the assignments Ah, the experiment
assignments of the composed model, κA, and the user pref-
erences u as input (line 6).

The dimensions of the composed model’s experiment as-
signments, κA, are part of the composition description and
assumed to be defined by the modeler during composition.
This can also be done implicitly. For example, our prototype
currently calculates the minimum and maximum value for
each parameter of the reused models, by iterating over the
experiment assignments of all their hypotheses. To construct

κA, we use these minimal and maximal parameter values as
boundaries, and then join these parameter intervals of the
reused models together. If a parameter is defined in both
reused models, we use the overall minimum and maximum
value. In this way, we can define valid parameter ranges for
the composed model without user intervention. Still, if the
modeler explicitly sets one parameter to a constant value
during the composition, κA will be reduced accordingly.

Our prototype currently implements updateBounds in a
simple way. For each dimension of κA, the intersection of the
corresponding intervals in Ah and κA is calculated. If there
is no such dimension in Ah, e.g., because the corresponding
parameter is defined in the composed model but not the
reused model, the interval from κA is used. There are other
ways to generate the new experiment assignments Ah′ , e.g.,
in some situations it may be preferable to compute a union
of the parameter intervals (and not an intersection). To let
the user have control over this aspect, the function also takes
user preferences as input.

Even with these precautions regarding an update of the
parameter bounds, it is still possible that A′h is empty. In
our prototype implementation of updateBounds, this means
there is at least one parameter with non-overlapping bounds
in Ah and κA. In this case, the user preference regarding
the strictness of hypothesis generation determines how to
proceed. This is shown in lines 8–12 of Algorithm 2. As κA

describes for which parameter bounds the composed model
shall be used, a lack of assignments that fall within these
bounds could mean that the composition itself is problem-
atic. Thus, the hypothesis creation function should stop and
return an error message (strict mode, line 9). However, it
could also mean that over-constrained hypotheses are the
problem, i.e., they are of less importance for the composed
model and should be discarded (tolerant mode, line 10).
Besides these options, a user might also be more interested
in exploring the validity of model properties for the new
parameter bounds of the composed model, and would thus
like to check them with the experiment assignments in κA

(retry mode, line 11). Anyhow, the newly defined exper-
iment assignments Ah′ will then be used to define a new
hypothesis (line 14).

We assume that for each hypothesis h = Ah � Pr1p(φ)h,
defined for either m1 or m2, there is also a correspond-
ing experiment definition exph that allows to check whether
Pr1p(φ)h is true for a certain assignment a ∈ Ah and the
reused model. As described in Section 3.2.1, this experiment
definition can be reused with minimal adaptations. Thus, it
allows us to check whether Pr1p(φ)′h is true for a certain as-
signment a′ ∈ A′h and mc. The advantage of this approach
is that the actual experiment definition can be arbitrarily
complex, e.g., in terms of output analysis, experiment de-
sign, or stopping conditions. Anyhow, we omit the explicit
handling of experiments from the pseudo-code for simplicity.

3.2.3 Interpretation of Generated Output
If Algorithm 1 finds a problem, it will return a (set of)

counterexamples H−. It is easy to re-check these counterex-
amples on the model for which they have been defined orig-
inally. This is important, because the hypotheses that char-
acterize the reused models may have been checked insuffi-
ciently, i.e., they may not even be valid for the original mod-
els. Depending on the outcome of testing the corresponding
model component (m1 or m2), the user knows whether there

Hypothesis & Experiment Definition (SESSL)

Hypothesis Creation & Experiment Execution

Statement Evaluation on Output (e.g. LTL Model Checking)

- Experiment specifications
- Hypotheses

- Output data
- Statement

- Statement evaluation (true ˅ false)

- Composition results
- Errors

Figure 6: The three layers of our prototype imple-
mentation: a SESSL extension is used to specify
experiments and hypotheses on model components
(upper layer) and the middle layer generates the new
hypotheses and executes all experiments (red box).
The lower layer evaluates each statement against the
generated output.

is a problem with the composition (i.e., the counterexample
is true for m1, but not for mc) or a problem with the hy-
pothesis set of the original model component (i.e., the coun-
terexample is true for neither m1 nor mc). Such checks can
be easily triggered automatically, so that a user can quickly
see what kind of problem has been encountered. Extending
our prototype in that regard will be subject to future work.

4. IMPLEMENTATION & RESULTS

4.1 Implementation
Our implementation of the concepts described in Section 3

consists of three distinct layers, as summarized in Figure 6.
The first layer provides the user interface, i.e., it allows to

define hypotheses and their corresponding simulation exper-
iments for individual models. Currently, this user interface
is realized as an extension of SESSL [9] that provides the
functionality to define hypotheses regarding the simulation
output. It can be used to augment SESSL experiments by
mixing in the Hypotheses trait, as shown in line 1 of Fig-
ure 2. Besides defining simulation experiments, the main
task of this layer is the creation of an object hierarchy that
represents a hypothesis. Both the experiment specification
and the hypothesis representation are handed over to the
second layer. Many other kinds of user interfaces could be
developed on top of this layer, e.g., to specify hypotheses via
a graphical user interface.

The second layer implements our overall concept (see Al-
gorithms 1 and 2) and defines the type hierarchy for the
hypotheses that are currently supported, i.e., so far LTL-
Expressions, probabilistic statements (Pr1p(φ)), and cus-
tom predefined predicates (see Section 2.1.3). This layer is
integrated into JAMES II, so that it can leverage its plug’n
simulate approach [16] to ensure its flexibility regarding fu-
ture extensions, as well as its applicability to the various
modeling formalisms already supported by JAMES II.

The third layer is triggered by the second layer to check
the generated hypotheses against the simulation output of
the composed model. It is implemented on top of JAMES II
as well. So far, this layer provides a re-implementation of
the model checking approach followed in [10], as well as sup-
port for custom predicates. We consider the integration of
additional model checking approaches to be future work.

Same
Prey

Same
Predator

Food
Chain

Coexisting state
√

/
√

� / �
√

/ �
Empty state

√
/
√ √

/
√

� /
√

Recovery comparison
√

/
√

� /
√ √

/ �

Table 1: Results overview. For each composition
type, the hypotheses of the two reused models are
checked. Each cell contains the results of check-
ing both hypotheses that refer to the same prop-
erty (one hypothesis from each of the reused mod-
els). The symbol

√
represents hypotheses that hold,

whereas the symbol � represents those that do not
hold.

Finally, note that our prototypical implementation is still
mostly independent of concrete simulation systems, i.e., it
can be integrated into other simulation systems with rel-
atively little effort. This is because the plug-in system of
JAMES II is used as a foundation, but our prototype re-
quires none of its simulation-specific abstractions.

4.2 Result Analysis
Table 1 gives an overview about the results of our example

(see Section 2), where
√

means that the property also hold
in the composed model, and � that it does not hold (at least
not with the expected probability p ≥ 0.8). For each type
of composition (see Section 2.3), the hypotheses referring to
the two reused models are checked for the composed model.

If we look at the results, we see that two predators feeding
on the same prey is unproblematic (i.e., the same prey com-
position). This is to be expected, as the prey still controls
the behavior of the predator(s). The situation is different if
a predator feeds on two prey species (i.e., the same preda-
tor composition). Here, the weaker prey is likely to become
extinct, which is not uncommon. In case of the food chain
composition, only the hypothesis of one reused model holds
in the composed model, while the hypothesis of the other
reused model does not hold. This indicates that this com-
position type might not be valid. Actually, in the given
example we would expect the wolves to also feed on rabbits
as soon as rabbits are around, and not only on foxes (cf.
Figure 4).

Table 2 shows the results in more detail. Here, another
interesting observation is that one hypothesis regarding“Re-
covery comparison” for the same predator composition holds
for 9 out of 10 tested assignments in the composed model.
Thus, the likelihood to find a counterexample is low, i.e., this
would be difficult to find out if the hypotheses were checked
manually. This illustrates the potential of our approach in
preventing users from coming to incorrect conclusions re-
garding the hypotheses that hold in a composed model.

5. DISCUSSION

5.1 Related work
Other approaches that address semantic composition of

models depend on the existence of a perfect model, based on
which the composed models can be validated [44, 38]. The
validity of the composed model is measured by comparing
its simulation executions with that of the perfect model,
which are represented by Labeled Transition Systems [37].

Original statement Composition Type
Composition
Description

|A+| |A−| Counterexample

Coexisting State(Rabbit, Fox) The Same Prey – 10 0 –
Coexisting State(Rabbit, Wolf) The Same Prey – 10 0 –

Coexisting State(Rabbit, Wolf) The Same Predator – 3 7
a:0.015;b:0.7;d:0.5;

nRabbit:100;nWolf:10;nSheep:100

Coexisting State(Sheep, Wolf) The Same Predator – 1 9
a:0.012;b:0.9;d:0.5;

nRabbit:100;nWolf:10;nSheep:100
Coexisting State(Rabbit, Fox) The Food Chain nFox:30 10 0 –

Coexisting State(Fox, Wolf) The Food Chain nFox:30 5 5
a:0.014;b:0.7;d:0.9;

nRabbit:100;nWolf:10;nFox:30
Recovery Comparison(Rabbit, Fox) The Same Prey – 10 0 –
Recovery Comparison(Rabbit, Wolf) The Same Prey – 10 0 –

Recovery Comparison(Rabbit, Wolf) The Same Predator – 9 1
a:0.024;b:0.9;d:0.5;

nRabbit:10;nWolf:10;nSheep:10
Recovery Comparison(Sheep, Wolf) The Same Predator – 10 0 –
Recovery Comparison(Rabbit, Fox) The Food Chain – 10 0 –
Recovery Comparison(Fox, Wolf) The Food Chain – 10 0 –
Empty State(Rabbit, Fox) The Same Prey – 10 0 –
Empty State(Rabbit, Wolf) The Same Prey – 10 0 –
Empty State(Rabbit, Wolf) The Same Predator – 10 0 –
Empty State(Sheep, Wolf) The Same Predator – 10 0 –

Empty State(Rabbit, Fox) The Food Chain nFox:30 0 10
a:0.055;b:0.3;d:0.8;

nRabbit:100;nWolf:30;nFox:30
Empty State(Fox, Wolf) The Food Chain nFox:30 10 0 –

Table 2: Detailed results. The column “Original statement” shows the properties and the related species. All
properties are checked regarding their probability (p ≥ 0.8), which is omitted for simplicity. In “Composition
Description”, additional information regarding the composition are given (if necessary). |A+| and |A−| are
the number of assignments for which the property holds and does not hold, respectively. In our example, we
set the sampling number to 10, thus |A+|+ |A−| = 10. A counterexample is given for invalidated hypotheses
(see rows with gray background).

However, it may not be easy to find a perfect model. In
contrast, our approach makes use of models being annotated
with experiments and hypotheses about a model’s behavior.
Through checking the hypotheses of the reused models in the
composed model, some information about the validity of the
composed model are provided. Hence, in our approach, the
semantic model composition is studied from a different view.

With the initiative MIASE (Minimum Information About
a Simulation Experiment) [42], and associated methods like
SED-ML (a description language for experiments) [43], the
systems biology community set out to define standards to
annotate models with experiment descriptions. While these
annotations are typically aimed at reproducing simulation
results, we use this information about experiments to derive
hypotheses that ensure semantically more reasonable com-
position, and for testing hypotheses by adapting the original
experiment specifications. Thereby, we move the attention
from describing the details needed to reproduce or execute
an experiment to the goal that drives an experiment, i.e.,
the definition of the hypothesis to be tested.

Increasingly, trajectories produced by simulation are checked
regarding specific properties, often defined in temporal logic.
Some approaches work with deterministic models [10], while
others work with stochastic models [35]. This is reflected in
the language that is used to express the properties that shall
hold. Whereas linear temporal logic (LTL) is focused on one
trajectory, continuous stochastic logic (CSL) has been de-
veloped to check Continuous Time Markov models. In our
approach we rely on a hybrid approach, i.e., we use LTL
to check individual traces and adopt a CSL construct as an
external wrapper to express the expected probability. How-
ever, currently the nesting of probabilistic operators is not

supported. To evaluate the LTL formulas, we use the algo-
rithm presented in [10], and to account for the stochasticity
we adopt the approach from [35] (see Section 2.1.3).

As properties defined in temporal logic can be interpreted
as a discrete target function, this approach can easily be
applied for optimizing the model, e.g., to fit the parameter
values of a model, including the parameters of rules that link
two or more models [20]. Those approaches depend on users
specifying explicitly the entire experiment from scratch, in-
cluding the goal of the individual experiment in terms of the
parameter value ranges to be searched and the property to
be checked. In our approach, we extract this information
by reusing “old” experiment descriptions, i.e., we interpret
an experiment description as a hypothesis that holds for a
reused model (and experiment, e.g., regarding parameter as-
signments), and can thus be used to automatically generate
and check this hypothesis for the composed model. Thus,
our approach takes a next step to generate hypotheses and
experiments automatically, by reusing hypotheses and ex-
periment descriptions of the models that shall be reused.

Techniques similar to ours have also been developed in the
field of software testing. For example, program analysis via
symbolic execution can be combined with model-checking
and observations from actual program executions to auto-
matically generate software tests [28]. These tests can be
considered as experiments to test developer hypotheses re-
garding a program, e.g., that it should not crash for valid
input. Test generation may even exploit the composition
of a program, which in this context means to construct the
overall set of execution paths by considering the execution
paths of each procedure individually [13]. Like the sampling
of experiment assignments (see Section 3.2.1), the genera-

tion of test data is crucial to find bugs, i.e., to invalidate
a hypothesis. Metaheuristics have been successfully applied
to this task [23], and we plan to integrate similar techniques
to our prototype.

5.2 Limitations and future work
A limitation of our approach is that the falsification or

corroboration of hypotheses referring to the composed model
and certain assignments still have to be interpreted by the
user. There does not seem to be an easy way to automate
this step. However, the approach provides additional valu-
able information to the user for evaluating the composed
model. A suitable presentation of this information still has
to be developed.

The current language to describe properties (see Section
2.1.3) is not able to easily express all interesting aspects even
in our comparatively simple experiments with the Lotka-
Volterra models. Therefore, future work will be dedicated
to enhance the expressiveness of these LTL terms, e.g., inte-
grating regular expressions to describe repeating patterns [5]
(e.g., oscillations), or integrating user-defined functions. Both
will be facilitated by the design of SESSL as a domain-
specific language embedded in Scala.

Our current approach only considers individual trajecto-
ries and replications of those. However, some properties
refer to differences between the trajectories sets of multi-
ple assignments. For example, the ratio-dependent theory
states that if an ecosystem has richer resources, there should
be higher equilibrium abundances on all trophic levels, in
comparison to an ecosystem with less resources [12]. So, if
we have more food for rabbits available, we would expect a
higher number of both, rabbits and foxes. To also allow for
these kind of properties to be checked, the current design
of Algorithm 1 has to be adapted, as it requires to compare
the relation between the results of different assignments.

Compared to the original hypotheses, the hypotheses that
are currently checked on the composed model are only differ-
ent referring to possibly renamed species and the sampling
of parameter values for which the statements shall hold. De-
pending on the number of hypotheses to be checked, some
preprocessing could allow a more efficient evaluation of LTL
formulas, e.g., by joining some formulas together or by re-
ordering their operators, and should thus be considered in
the future. In addition, as already mentioned in Section 3.2,
sampling methods may have a strong impact on overall per-
formance and need to be investigated further.

6. CONCLUSION
An explicit, unambiguous specification of experiments is

increasingly required to support the reproduction of simula-
tion results in many application domains. This information
can also be very valuable to support a semantically mean-
ingful reuse of models. The underlying idea of our approach
is that, if models are annotated with experiments and their
corresponding hypotheses, then it becomes possible to au-
tomatically generate new experiments and hypotheses for
composed models, and to automatically execute the new ex-
periments to check the hypotheses, independently of what
kind of composition, e.g., aggregation or fusion, is used.

Obviously, the results of these experiments help assessing
the validity of the newly composed model, referring to the
questions the reused models have been designed for.

Our approach has been realized in the context of the
modeling and simulation framework JAMES II. For ex-
periment specification and execution, we use the embedded
domain-specific language SESSL, which we extended to al-
low the definition of experiment hypotheses. The hypothe-
ses comprise statements about the behavior of the system
and parameter ranges within which this behavior has been
observed. As we are working with stochastic models, the
statements shall hold with a specific probability. To do so,
statements of the form Pr1p(φ) are defined by adopting con-
cepts from continuous stochastic logic and linear temporal
logic (see Section 5.1), where φ describes a property of an
individual trajectory (and thus is tested on individual trajec-
tories), whereas assessing the probability p with which φ can
be observed depends on statistical model checking methods,
i.e., it is based on simulation replication.

After our promising results with the Lotka-Volterra model,
we plan to apply our approach to current modeling and sim-
ulation studies in the area of cell biology, where a Wnt-
pathway model [22] is successively extended by other mod-
els that describe membrane-related dynamics or diffusion
processes in more detail, and which come with their own ex-
periments and hypotheses. The results will shed new light
on the validity of the newly developed models, or, in some
cases, also on the validity of hypotheses assumed to hold for
the reused models. We expect our approach to significantly
improve the development process of these new models, as
it helps to ensure a semantically meaningful reuse of the
existing models.

Acknowledgments
This research is partly supported by the CSC (China Schol-
arship Council), the German research foundation, (Grant
No. EW 127/1-1), and the National Natural Science Foun-
dation of China (Grant No. 61374185). We thank Tom
Warnke for providing his implementation of the algorithm
presented in [10].

7. REFERENCES
[1] J. Bézivin, S. Bouzitouna, M. D. Del Fabro, et al. A

canonical scheme for model composition. In Model
Driven Architecture–Foundations and Applications,
pages 346–360. Springer, 2006.

[2] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[3] P. K. Davis and R. H. Anderson. Improving the
composability of DoD models and simulations. JDMS,
1(1):5–17, Apr. 2004.

[4] L. De Alfaro and T. A. Henzinger. Interface-based
design. In Engineering Theories of Software-intensive
Systems, volume 195 of NATO Science Series:
Mathematics, Physics, and Chemistry, pages 83–104.
Springer, M. Broy, J. Gruenbauer, D. Harel, and
C.A.R. Hoare, 2005.

[5] G. De Giacomo and M. Y. Vardi. Linear temporal
logic and linear dynamic logic on finite traces. In
Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI’13, pages
854–860. AAAI Press, 2013.

[6] M. Droz and A. Pȩkalski. Different strategies of
evolution in a predator-prey system. Physica A:
Statistical Mechanics and its Applications,
298:545–552, 2001.

[7] P. Du, W. A. Kibbe, and S. M. Lin. Improved peak
detection in mass spectrum by incorporating
continuous wavelet transform-based pattern matching.
Bioinformatics, 22(17):2059–2065, 2006.

[8] H. Elmqvist, S. E. Mattsson, and M. Otter.
Object-oriented and hybrid modeling in modelica.
Journal Européen des systèmes automatisés,
35(1):1–10, 2001.

[9] R. Ewald and A. M. Uhrmacher. SESSL: A
Domain-Specific Language for Simulation
Experiments. ACM Transactions on Modeling and
Computer Simulation, 2014 (to appear). See
http://sessl.org.

[10] F. Fages and A. Rizk. On the analysis of numerical
data time series in temporal logic. In Computational
Methods in Systems Biology, 2007.

[11] D. T. Gillespie. Exact Stochastic Simulation of
Coupled Chemical Reactions. Journal of Physical
Chemistry, 81(25), 1977.

[12] L. Ginzburg and H. Akçakaya. Consequences of
ratio-dependent predation for steady-state properties
of ecosystems. Ecology, 73(5):1536–1543, 1992.

[13] P. Godefroid. Compositional dynamic test generation.
In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 47–54, New York, NY,
USA, 2007. ACM.

[14] A. Hallagan, B. Ward, and L. F. Perrone. An
experiment automation framework for ns-3. In
Proceedings of the 3rd Int’l ICST Conference on
Simulation Tools and Techniques. ICST, 2010.

[15] T. Helms, M. Luboschik, H. Schumann, and A. M.
Uhrmacher. An approximate execution of rule-based
multi-level models. In Proceedings of the 11th
International Conference on Computational Methods
in Systems Biology, 2013.

[16] J. Himmelspach and A. M. Uhrmacher. Plug’n
simulate. In Proceedings of the 40th Annual
Simulation Symposium, ANSS ’07, pages 137–143,
Washington, DC, USA, 2007. IEEE Computer Society.

[17] M. Hucka, L. Smith, D. Wilkinson, M. Hucka, et al.
The systems biology markup language (SBML):
language specification for level 3 version 1 core. Nature
Precedings, Oct. 2010.

[18] C. Li, M. Donizelli, N. Rodriguez, et al. BioModels
Database: An enhanced, curated and annotated
resource for published quantitative kinetic models.
BMC Systems Biology, 4:92, Jun 2010.

[19] A. Lotka. Elements of Physical Biology. Williams &
Wilkins Company, 1925.

[20] E. D. Maria, F. Fages, and S. Soliman. On coupling
models using model-checking: Effects of irinotecan
injections on the mammalian cell cycle. In Proceedings
of Computational Methods in Systems Biology, pages
142–157. Springer, 2009.

[21] C. Maus, S. Rybacki, and A. M. Uhrmacher.
Rule-based multi-level modeling of cell biological
systems. BMC Systems Biology, 5(166), 2011.

[22] O. Mazemondet, M. John, S. Leye, A. Rolfs, and
A. M. Uhrmacher. Elucidating the sources of
beta-catenin dynamics in human neural progenitor
cells. Plos One, 7(8):e42792–e42792, 2012.

[23] P. McMinn. Search-based software test data
generation: a survey. Software Testing, Verification
and Reliability, 14(2):105–156, June 2004.

[24] D. Nicol, C. Priami, H. Nielson, and A. Uhrmacher,
editors. Simulation and Verification of Dynamic
Systems. Dagstuhl Seminar Proceedings 0161, 2006.
ISSN 1862-4405.

[25] C. M. Overstreet, R. Nance, and O. Balci. Issues in
Enhancing Model Reuse. In First International
Conference on Grand Challenges for Modeling and
Simulation, 2002.

[26] D. Peng, A. Steiniger, T. Helms, and A. Uhrmacher.
Towards Composing ML-Rules Models. In Proceedings
of the 2013 Winter Simulation Conference, 2013.

[27] M. D. Petty and E. W. Weisel. A composability
lexicon. In Spring Simulation Interoperability
Workshop (SISO), pages 181–187, 2003.

[28] C. Păsăreanu and W. Visser. A survey of new trends
in symbolic execution for software testing and
analysis. International Journal on Software Tools for
Technology Transfer, 11(4):339–353, Oct. 2009.

[29] R. Randhawa, C. a. Shaffer, and J. J. Tyson. Model
aggregation: a building-block approach to creating
large macromolecular regulatory networks.
Bioinformatics (Oxford, England), 25(24):3289–95,
Dec. 2009.

[30] E. Renshaw. Modelling Biological Populations in Space
and Time. Cambridge Studies in Mathematical
Biology. Cambridge University Press, 1991.

[31] M. Röhl and A. M. Uhrmacher. Definition and
analysis of composition structures for discrete-event
models. In Proceedings of the 2008 Winter Simulation
Conference, pages 942–950, 2008.

[32] S. Rybacki, F. Haack, K. Wolf, and A. Uhrmacher.
Developing simulation models - from conceptual to
executable model and back - an artifact-based
workflow approach. In SimuTools, 2014.

[33] S. Sanchez and H. Wan. Work smarter, not harder: A
tutorial on designing and conducting simulation
experiments. In Proceedings of the 2012 Winter
Simulation Conference (WSC), pages 1–15, Dec 2012.

[34] F. Scholkmann, J. Boss, and M. Wolf. An efficient
algorithm for automatic peak detection in noisy
periodic and quasi-periodic signals. Algorithms,
5(4):588–603, 2012.

[35] K. Sen, M. Viswanathan, and G. Agha. On statistical
model checking of stochastic systems. In K. Etessami
and S. Rajamani, editors, Computer Aided
Verification, volume 3576 of Lecture Notes in
Computer Science, pages 266–280. Springer Berlin
Heidelberg, 2005.

[36] C. A. Shaffer, R. Randhawa, and J. J. Tyson. The role
of composition and aggregation in modeling
macromolecular regulatory networks. In Proceedings of
the 38th conference on Winter simulation, pages
1628–1636. Winter Simulation Conference, 2006.

[37] J. Srba. On the power of labels in transition systems.
In Proceedings of the 12th International Conference on
Concurrency Theory, pages 277–291, 2001.

[38] C. Szabo and Y. Teo. An approach for validation of
semantic composability in simulation models. . . . on

http://sessl.org

Principles of Advanced and Distributed Simulation,
pages 3–10, June 2009.

[39] C. Szyperski, D. Gruntz, and S. Murer. Component
Software: Beyond Object-oriented Programming. ACM
Press Series. ACM Press, 2002.

[40] A. Tolk. What comes after the semantic web - pads
implications for the dynamic web. In Workshop on
Principles of Advanced and Distributed Simulation
(PADS), page 55. IEEE Computer Society, 2006.

[41] V. Vito. Variazioni e fluttuazioni del numero
d’individui in specie animali conviventi. Mem. R.
Accad. Naz. dei Lincei, 2:31–113, 1926.

[42] D. Waltemath, R. Adams, D. A. Beard, F. T.
Bergmann, et al. Minimum Information About a
Simulation Experiment (MIASE). PLoS
Computational Biology, 7(4):e1001122, 2011.

[43] D. Waltemath, R. Adams, F. Bergmann, M. Hucka,
et al. Reproducible computational biology experiments
with SED-ML - the simulation experiment description
markup language. BMC Systems Biology, 5:198, 2011.

[44] E. Weisel, M. Petty, and R. Mielke. Validity of models
and classes of models in semantic composability.
Proceedings of the Fall 2003 SIW, 2003.

[45] H. L. Younes and R. G. Simmons. Statistical
probabilistic model checking with a focus on
time-bounded properties. Information and
Computation, 204(9):1368 – 1409, 2006.

[46] H. L. S. Younes and R. G. Simmons. Probabilistic
verification of discrete event systems using acceptance
sampling. In Proceedings 14th International
Conference on Computer Aided Verification, volume
2404 of LNCS, pages 223–235. Springer, 2002.

[47] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian
statistical model checking with application to
simulink/stateflow verification. In Proceedings of the
13th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC ’10, pages
243–252, New York, NY, USA, 2010. ACM.

	Introduction
	Example: Composition of Lotka-Volterra models
	Ingredients
	Model Description and Execution
	Experiment Description
	Property Description

	The basic Lotka-Volterra Model
	Composing Lotka-Volterra Models
	Generating Experiments for Hypotheses

	The Concept
	Basic Notation
	Experiment Generation
	Basic Algorithm
	Creation of Hypotheses
	Interpretation of Generated Output

	Implementation & Results
	Implementation
	Result Analysis

	Discussion
	Related work
	Limitations and future work

	Conclusion
	References

