
A

SESSL: A Domain-Specific Language for Simulation Experiments

(Pre-print)

Roland Ewald and Adelinde M. Uhrmacher, University of Rostock

This paper introduces SESSL (Simulation Experiment Specification via a Scala Layer), an embedded

domain-specific language for simulation experiments. It serves as an additional software layer between users

and simulation systems and is implemented in Scala. SESSL supports multiple simulation systems and offers
various features, e.g., for experiment design, performance analysis, result reporting, and simulation-based

optimization. It supports ‘cutting-edge’ experiments by allowing to add custom code, enables a reuse of

functionality across simulation systems, and improves the reproducibility of simulation experiments.

Additional Key Words and Phrases: Simulation, Experiments, Domain-Specific Language, Scala

ACM Reference Format:

THIS IS A PREPRINT. See http://dx.doi.org/10.1145/2567895 for the final version, which appeared
in ACM Transactions on Modeling and Computer Simulation, 2014, 24(2). ACM Trans. Model. Comput.

Simul. V, N, Article A (January YYYY), 25 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The importance of unambiguous, sound, and simple ways to set up reproducible and effi-
cient simulation experiments can hardly be overstated, particularly when considering the
various problems that pervade simulation studies [Pawlikowski et al. 2002] and scientific
computing in general [Merali 2010; Joppa et al. 2013]. However, supporting users in set-
ting up simulation experiments is difficult. Typically, the simulation system at hand allows
to define various experiment parameters, the names of which are not always clear or even
used consistently across the system (let alone others). This is particularly true in a research
context, where software development moves fast and the resulting prototypes are rarely
documented and maintained as thoroughly as proprietary software.

One way to improve the current situation is to standardize experiment descriptions, but
several issues hinder the establishment of such standards. Firstly, there is a natural time lag
between the demands of ‘power users’ and standardization efforts. Hence, many users would
have to wait until their desired experiment setups are expressible within the standard — or,
more likely, they define their experiments for a specific simulation system instead. This,
in turn, means less engagement to standardize experiment descriptions in the first place,
leading to a vicious cycle that we suspect is one of the main reasons for the lack of a
well-established standard to date. Secondly, any sufficiently expressive description language
for simulation experiments will be so feature-rich that sophisticated tools are necessary
to support users, e.g., custom editors with syntax highlighting. Developing such tools and
integrating them into simulation systems requires considerable effort. Thirdly, standardized

THIS IS A PREPRINT
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1049-3301/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/2567895

A:2 Roland Ewald, Adelinde M. Uhrmacher

descriptions alone are no panacea for sound experiments, since much depends on how a
description is interpreted by a simulation system. If an experiment description contains
insufficient detail (e.g., regarding the usage of random number generators), the simulation
system itself has to fill the gaps, so that the results may be irreproducible with other
systems.

To address the above issues, we propose to add a separate software layer on top of sim-
ulation systems. This layer shall provide a system-independent application programming
interface (API) for specifying simulation experiments. Further, we argue that such an API
should be realized as an embedded domain-specific language (DSL), to maximize its read-
ability and usability. A DSL is “a [...] language [...] that offers, through appropriate nota-
tions and abstractions, expressive power focused on [...] a particular problem domain.” [van
Deursen et al. 2000, p.1]. A DSL is called embedded if it is implemented with constructs
of a general-purpose programming language, the so-called host language of the embedded
DSL. In other words, embedded DSLs are APIs that “[...] should have the feel of a custom
language [...]” [Fowler 2010, p. 28].1

Since, technically, an embedded DSL is just an API, it can be mixed with custom code.
Thus, even ‘power users’ can use it for their experiments: they merely need to provide
additional code for those peculiarities that are not yet supported. By contributing support
for hitherto neglected experiment facets, these users may thus help to ‘grow’ the language.
Extending an embedded DSL is typically straightforward, as it simply means to extend
an API written in the host language. The ability to evolve a language bottom-up, driven
by demand, seems particularly important in the field of simulation, with its large (and
sometimes disconnected) sub-communities. Furthermore, an embedded DSL can be used
with the same tools as its host language, so that convenient features like syntax highlighting
or code completion are available from the onset, without additional development efforts.
Serving as a layer between experimenters and simulation systems, the DSL implementation
may also provide common checks regarding the soundness of the experiment (e.g., whether
some factors are accidentally defined twice).

Setting up an experiment with an embedded DSL means to program its execution, which
leaves — in contrast to experiment descriptions — no room for ambiguity. For example, con-
sider an experiment that does not define which random number generator to use. With a
program, the effect of this omission is unambiguous (e.g., a default random number genera-
tor is used). With an experiment description, on the other hand, this issue has to be resolved
by each simulation system that interprets the description. This leaves room for ambiguity:
systems may have different defaults (or return different errors), and it might be difficult
to investigate what generator had been used in a given experiment. To emphasize this
distinction, we speak of experiment specification instead of experiment description. While
reproducibility is still only ensured when using the same simulation system (as with exper-
iment descriptions), a specification makes the experiment’s dependence on certain software
artifacts explicit (e.g., via import statements) and prevents unintentional misuse (e.g., by
provoking compile errors in their absence). Also, default settings can be defined at the level
of the DSL and reused across simulation systems, thereby improving the odds for keeping
experiments reproducible even across different systems.

To illustrate the above advantages, we present SESSL, an embedded DSL for simulation
experiments. It is written in Scala, a programming language compatible with Java, and thus
easy to use with many simulation systems. We designed it for maximal simplicity, so that
its users do not need to be knowledgeable programmers. At the same time, SESSL allows
to set up complex simulation experiments. In Section 2, we explain the design of SESSL
and its overall structure. To illustrate its broad applicability, we then discuss several sample

1According to [van Deursen et al. 2000], the term ‘embedded DSL’ was introduced in [Hudak 1996].

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:3

experiments (Section 3). Afterwards, we discuss our approach in the context of related work
(Section 4).

2. SIMULATION EXPERIMENT SPECIFICATION VIA A SCALA LAYER (SESSL)

In this section, we first detail the requirements that an additional software layer for ex-
periment specification should meet (Section 2.1) and what makes Scala a suitable host
language for a DSL realizing such a layer (Section 2.2). Then, we describe SESSL’s design
(Section 2.3) and its concrete syntax (Section 2.4).

2.1. Requirements

First and foremost, the language should be easy to learn. Experiments should be simple to
understand, even for a cursory reader. At the same time, the language should be expressive
enough to cover most usage scenarios that arise in practice, and its notation should be
concise.

To optimally assist users, the language should make it easy to define meaningful exper-
iments and hard to define inconsistent ones. For example, its implementation should warn
a user who configured a data sink for simulation output although the experiment does not
generate any such output. The language should also be largely independent of a specific
simulation system. This allows users to use the same (or very similar) notation to work
with different systems. Experiment setups would become portable, which helps to cross-
validate results. Experimenters should be able to reuse (parts of) experiment specifications,
also from within other software systems.

To gain broader acceptance, it should be straightforward to add support for another sim-
ulation system. At first sight, this problem seems easy to solve, because an embedded DSL
hides the concrete API of a simulation system. On the other hand, a simulation system
may offer some specialized experimentation techniques not yet accessible via a standardized
interface, e.g., a particular technique for sensitivity analysis or a new way to store simu-
lation data. If the specifics of a simulation system were completely hidden and developers
would have no way to add system-specific constructs, these facets could not be configured
easily. As pointed out in the introduction, this discourages ‘power users’ from adopting ex-
perimentation standards. Therefore, the language itself needs to be easy to customize and
extend.

Allowing developers of simulation systems to define system-specific features helps to
evolve the overall language. If, at some point, the way to specify a certain experiment
facet becomes accepted within the community, incorporating it into the ‘core’ of the lan-
guage should be easy. In any case, experimenters should typically not be bothered by this,2

i.e., the combination of system-specific and general language constructs needs to be seamless
and unobtrusive.

2.2. Why Scala?

We chose the general-purpose language Scala [Odersky et al. 2011] as a host language for
SESSL because of two reasons: firstly, it is fully interoperable with Java, a popular language
among simulation system developers. This makes it particularly easy to support simulation
systems executed on the Java virtual machine (JVM). Of course, SESSL can also work with
other kinds of simulation systems (as we demonstrate in Section 3.3.2), but this requires
more development effort. Secondly, Scala has many features that make it an ideal choice
for developing embedded domain-specific languages (e.g., see [Odersky et al. 2011, p. 727
et sqq.]). In the following, we focus on those Scala features that are essential for the design
of SESSL.

2Unless they aim at making their experiments reproducible across different systems.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Roland Ewald, Adelinde M. Uhrmacher

Scala is statically typed and combines object-oriented and functional programming.
Functions are regarded as objects and can thus be passed to other functions. Func-
tions can have arbitrary names, such as ‘+’ or ‘*’, and can be used in infix notation,
so that they look like built-in operators. Functions can have default parameter values
and can be invoked with named parameters. For example, a function defined by “def
f(x:Int=1,y:Int=2,z:Int=3) = x+y+z” can be called with f(z=5), which yields 8. An-
other feature that makes Scala well-suited for DSL creation is that function calls with a
single argument can be written with curly braces, so that they look like keywords in other
languages (e.g., try{...} in Java, see [Odersky et al. 2011, p. 173 et sqq.]). This enables
structuring (and nesting) DSL elements in a way with which many users are already com-
fortable.

To further improve readability, Scala allows to define so-called case classes [Odersky
et al. 2011, p. 270]. Among other things, case classes can be instantiated without a new
keyword. Since constructors can also have named parameters with default values, a case
class defined by “case class MyType(x:Int=0,y:Int=0)” can be instantiated by simply
writing MyType(y=1).

Scala supports automatic type conversions via implicit views. Whenever an object’s type
does not provide an invoked method, a special function within the current scope may gener-
ate an object of a type that does provide this method. For example, invoking "a".f results
in a compile error, since objects of type String do not have a method f. However, if the
compiler can find an implicit conversion function g in the current scope that is able to
convert a String object to an object of a type that does have such a method, this gets
essentially rewritten to g("a").f.3

Scala enhances Java’s notion of interfaces by offering traits. Traits are interfaces that
may also contain method definitions and member variables, and therefore can implement
own functionality. A trait is said to be abstract if it has at least one method that is merely
declared, i.e., its implementation has to be provided by a subtype. Traits cannot be in-
stantiated, but arbitrarily many traits can be mixed into a class. This so-called mix-in
composition is a powerful feature, because the traits mixed into a class may alter its func-
tionality. By declaring a so-called self-type, a trait can restrict the types into which it can
be mixed, thereby also gaining access to all methods of this type. Furthermore, traits can
also override methods of the class they are mixed into, and by doing so their functionality
can be ‘stacked’ [Odersky et al. 2011, p. 226].

2.3. Language Design

To ensure simplicity and readability, we propose to explicitly compose experiment specifi-
cations from ‘sub-specifications’ for particular experiment facets (Section 2.3.1). To ensure
independence of simulation system specifics, implementations of such sub-specifications need
to be split up (Section 2.3.2). To ensure that identical techniques realized by different sys-
tems can nevertheless be identified as such, they should be associated via Scala’s type system
(Section 2.3.3). Finally, to ensure that experiment results are easy to access, SESSL offers a
common, simulator-independent, and extensible result handling mechanism (Section 2.3.4).

2.3.1. Experiment Composition. Besides essential settings, e.g., which model to simulate,
there are many non-essential experiment facets that are merely important in some situ-
ations, e.g., how to plot simulation output. Experimenters should only have to deal with
those facets if they are relevant for a given experiment. This reduces the complexity of the
specification task, as only a subset of all language constructs has to be available. Therefore,
SESSL specifications are composed from experiment facets.

3Java programmers may think of this as a customizable form of auto-boxing.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:5

«trait»
ExperimentConfiguration

«trait»
BasicExperimentConfiguration

AbstractExperiment

Experiment

«trait»
AbstractObservation

«trait»
AbstractParallelExecution

«trait»
AbstractReport

«trait»
...

«trait»
Observation

«trait»
ParallelExecution

«trait»
Report

Fig. 1. The hierarchy of central types in the SESSL core (white) and their relation to the types provided
by a binding (gray), which implement their functionality for a concrete simulation system.

Experiment facets are realized as self-typed traits that get mixed into an Experiment
class, which contains the essential settings. Self-types allow to express dependencies between
experiment facets. For example, specifying how recorded data shall be stored implies that
data is recorded in the first place. Thus, a trait for configuring a data sink can express,
via its self-type, that it may only be mixed into experiments that record data. Trying
to do otherwise will result in a compile error, so that experimenters notice the problem
immediately.

Before a SESSL experiment starts, a configuration method is called for each experiment
facet, i.e., trait, that has been mixed in. This way of component composition is also called
the cake pattern, as each trait adds an additional layer of functionality to the original
class. The cake pattern is well established and used for the Scala compiler itself (e.g.,
see [Odersky and Zenger 2005]). Using the cake pattern in SESSL leads to a modular
‘interpreter’ [Hudak 1996] that consists of a component for each of the different experiment
facets: ideally, each trait provides both the methods to configure a certain experiment facet
and the interpretation logic to map this configuration to the given simulation system, e.g.,
by calling its API. Another advantage of the cake pattern is its extensibility. Developers can
easily add custom traits for experiment facets not yet supported (an important requirement,
see Section 2.1).

2.3.2. Independence of Simulation Systems. While SESSL serves as an additional layer of ab-
straction, the specifics of a simulation system must be taken into account within the in-
terpretation logic of the DSL, i.e., the code that configures a simulation system according
to the given experiment specification. This code is, in general, relatively easy to write for
embedded DSLs [Zdun and Strembeck 2009, p. 29]. However, as integrating additional sim-
ulation systems should be easy (see Section 2.1), programmers of interpretation logic need
to be supported as much as possible. We therefore split the type hierarchy of SESSL into
general components and system-specific components. We refer to the former as the SESSL
core and to the latter as SESSL bindings, one binding for each system to be integrated. In
the terminology of [Fowler 2010], the SESSL core provides a ‘semantic model’ of simulation
experiments on which the bindings operate.

The class diagram in Figure 1 illustrates this division: types of the SESSL core are reused
via inheritance by the types that realize a binding. All types of the SESSL core that are
intended to be used this way have the prefix Abstract. They are usually realized as abstract
traits. To integrate a simulation system, a developer defines sub-traits that inherit from
these abstract traits. This means to implement the system-specific methods declared (but
not defined) within the abstract traits of the SESSL core. An abstract trait represents an
experiment facet. By developing sub-types for only some of these traits, developers implicitly
describe which functionality of a simulation system can be configured via SESSL.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Roland Ewald, Adelinde M. Uhrmacher

2.3.3. Representing Algorithms. Simulation experiments typically involve the execution of
multiple distinct algorithms, e.g., event queues or random number generators. While algo-
rithms may be chosen automatically by the simulation system (e.g., see [Ewald 2011]), there
are many situations where experimenters need to exert more control. For example, when
the performance of a simulation algorithm shall be investigated, the algorithm and its pa-
rameters need to be configurable. Otherwise, stochastic SESSL experiments were — strictly
speaking — not even reproducible: if there is no way to set up a specific random number
generator (and its seed), the results of two subsequent executions may not be identical. This
restriction would exclude a whole range of relevant use cases, e.g., testing (see Section 3.1),
and thus needs to be avoided.

Besides parameters, algorithms may also rely on sub-algorithms, which should be fully
configurable as well. Thus, SESSL has to provide a simple way of configuring algorithm
hierarchies (e.g., see [Himmelspach and Uhrmacher 2007]). Two conflicting issues further
complicate algorithm configuration. On the one hand, algorithm implementations depend
on the specific simulation system that provides them. The set of available algorithms may
change over time, and it also varies from system to system. All this would call for a system-
dependent definition of algorithms. On the other hand, however, many implementations are
interrelated in some sense, e.g., they may be able to simulate the same kind of model or
realize the same fundamental approach. Making these interrelations explicit is important
to guide experimenters, e.g., when switching from one simulation system to another.

To resolve this problem, SESSL combines system-dependent case classes with a system-
independent type hierarchy of marker traits. A marker trait is a trait that does not declare
any methods and is thus merely used for ‘marking’ a type regarding certain properties. The
long term goal of such marker traits is to represent knowledge on simulation concepts and
their relations. This knowledge should be shared among all bindings, very much in the spirit
of an ontology. Developers of SESSL bindings have to define a class (typically a one-liner)
for each specific algorithm implementation that shall be explicitly configurable by experi-
menters. The marker traits mixed into such a class define how the algorithm implementation
relates to general concepts and methods for simulation, e.g., whether it is an approximative
method or what kind of problem it solves. By providing a class with certain marker traits,
a binding declares both properties and application domain of a simulation (sub-)algorithm
implementation. This helps experimenters to find related approaches via Scala’s type sys-
tem. In future, additional traits could easily associate these classes with corresponding (or
related) concepts in existing ontologies for modeling and simulation, such as DeMO [Miller
et al. 2004] or KiSAO [Courtot et al. 2011]. The potential benefits of representing ontologies
via type systems has already been noted by others, e.g., see [Despeyroux 2008].

One perceived drawback of this solution could be that experimenters have to explicitly
distinguish between, for example, cellular automata simulators from two different simulation
systems. While both classes would refer to the same kind of algorithm, as indicated by their
(marker) traits, they would still refer to different implementations of said algorithm and
these may indeed have different characteristics (e.g., w.r.t. runtime performance). Therefore,
being able to distinguishing both implementations is necessary to ensure reproducibility.

2.3.4. Result Handling. Result handling is a challenging issue in simulation experiments,
because there are various kinds of result. The type of result that first comes to mind are
metrics based on the model state as simulation time evolves. Such results can be represented
as trajectories or time-series (depending on the kind of simulation). For many stochastic
simulations, however, only statistics that aggregate these fine-grained results are of interest:
for example, the mean value of a variable at a given point in simulation time, averaged over
all replicated trajectories.

There are also many other kinds of results, depending on the purpose of a simulation
experiment. For example, experiments to analyze simulator performance rarely collect sim-

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:7

«trait»
Result

-id
-variableAssignment

RunResults
-id
ReplicationsResults ExperimentResults

«trait»
ResultAspectManagement

«trait»
ResultAspect

RunResultsAspect ReplicationsResultsAspect ExperimentResultsAspect

ObservationRunResultsAspect ObservationReplicationsResultsAspect ObservationExperimentResultsAspect

Fig. 2. The type hierarchy of results and result aspects. RunResults and ReplicationsResults have a
unique identifier to tell them apart (these may be system-specific). RunResults also stores the assignment
of model variables that was used to generate the results. This allows to group all runs with identical
assignments to ReplicationsResults.

ulation output data, which would only slow down the evaluation. Instead, they collect
performance metrics, e.g., run times. As SESSL shall be easy to use and extensible, we have
to deal with two issues arising from this. Firstly, experimenters should be able to specify
which kind of result shall be processed on what level of aggregation. Secondly, developers
should be able to add support for new kinds of results later on, so that the language can
evolve (see Section 2.1).

In terms of aggregation, it seems most useful to distinguish between the results of single
runs, the results of simulation replications (i.e., repeated runs with the same parameter
values), and the overall results of an experiment (e.g., see [Himmelspach et al. 2010]). SESSL
allows experimenters to process results on each of these aggregation levels, by following the
DSL pattern nested closure [Fowler 2010, p. 403]. Experimenters can specify (arbitrarily
many) functions for post-processing simulation results. The functions will be invoked during
experiment execution and, as they are closures, may refer to variables in their scope (e.g.,
to write a result into another data structure for later analysis).

The second issue, i.e., allowing developers to specify new kinds of results, is solved by
distinguishing between results and result aspects. A run, a set of replications, or a whole
experiment can each be associated with any number of result aspects. We use ‘aspect’ as a
non-technical term here, not to be confused with the term ‘aspect’ from aspect-oriented pro-
gramming, which refers to functionality for a cross-cutting concern (e.g., error handling). In
contrast, result aspects refer to different kinds of data generated by simulation experiments.

Figure 2 shows the type hierarchy to represent results in SESSL. It comprises two sub-
hierarchies, one for results (upper right corner) and one for result aspects. The result types
are derived from the type Result and have aggregation relationships among each other: for
example, an object of type ReplicationsResults contains (i.e., references) all results of
the individual runs it represents. Each result also inherits from ResultAspectManagement,
which provides the functionality to manage the data of additional result aspects. Result
aspects form a similar type hierarchy: they are all derived from ResultAspect and again
have aggregation relationships among each other. This makes it easier to develop aggregated
result aspects, which can access results of their own aspect from lower aggregation levels.

Our approach to result handling enables experimenters to express exactly which result
aspect to process (e.g., only execution times), and on what aggregation level. Experiment
facets that offer new kinds of results simply provide additional methods for result process-
ing (see Section 2.3.1). For example, the trait AbstractObservation (see Figure 1) offers
methods for working with the simulation outputs of a single run, a set of replications, or a
whole experiment. Likewise, the trait AbstractPerformanceObservation provides meth-

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Roland Ewald, Adelinde M. Uhrmacher

1 import sessl._
2 import sessl.james._
3

4 execute {
5 new Experiment with Observation {
6 model = "file-sr:/./SimpleModel.sr"
7 scan("r1" <∼ (0.5, 1, 1.5))
8 replications = 10
9 stopCondition = AfterWallClockTime(seconds=1) and AfterSimTime(10e4)

10 observe("A")
11 observeAt(range(100, 50, 9000))
12 withRunResult {
13 result => println(result ∼ "A")
14 }
15 }
16 }

Fig. 3. A simple SESSL experiment using JAMES II. Scala keywords are printed in blue.

ods for working with the performance data of a single run, a set of replications, or a whole
experiment.

The management and processing of results is implemented in the SESSL core, and hence
can be reused across simulation systems. By adding new types of result aspects and addi-
tional methods to handle them, developers can easily extend the current result processing
capabilities across different aggregation levels.

2.4. Syntax & Features

2.4.1. Introductory Example. We introduce the syntax with a small sample experiment,
shown in Figure 3. The SESSL core is located in package sessl, with bindings located in
sub-packages named after the software systems. Thus, an experimenter imports the SESSL
core (line 1) and the binding for the simulation system to be used, in this case the open
source modeling and simulation framework JAMES II [Himmelspach and Uhrmacher 2007]
(l. 2). Then, the experimenter executes a simulation experiment by calling the function
execute (l. 4–16) from the SESSL core with a new instance of an (anonymous) sub-class
of type Experiment (l. 5–15). The experiment involves observing simulation output, which
is declared by mixing in the trait Observation (l. 5). Both Observation and Experiment
are provided by the binding for JAMES II, but inherit from abstract types of the SESSL
core (see Figure 1).

Scala class constructors are written directly into the body of the class. They are used
in SESSL to define the details of the experiment (l. 6–14). At first, we specify the model
file to be used (l. 6). While this line looks like an assignment, it invokes a function to set
the model location. This allows to internally perform additional checks (e.g., does the file
exist?), which may also be system-specific (by overriding it, see Section 2.4.3). SESSL relies
on this syntactic simplification offered by Scala for most ‘assignments’. Note that there
are no restrictions regarding the model format. The specified string will be handed over to
the binding and hence can be system-specific. Such dependencies can be avoided by using
standardized model formats like the systems biology markup language (SBML) [Hucka, M.
et al. 2003] or the Petri Net markup language (PNML) [Weber and Kindler 2003].

Line 7 sets up a scan for model parameter r1 ∈ {0.5, 1, 1.5}. SESSL provides an implicit
view for the String literal "r1", for which a function named<∼ is defined (see Section 2.2).4

4This technique is also known as literal extension [Fowler 2010, p. 481 et sqq.].

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:9

1 import sessl._
2 execute({
3 import sessl.sbmlsim._
4 new Experiment {
5 model = "./sbmlModel.xml"
6 stopTime = .01 //[...]
7 }
8 }, {
9 import sessl.james._

10 new Experiment {
11 model = "./sbmlModel.xml"
12 stopTime = .01 //[...]
13 }
14 })

Fig. 4. This code fragment executes the same simulation experiment with two different simulation systems,
SBMLsimulator (see Section 3.3.1) and JAMES II. The duplicate specifications (of model and stop time)
can be avoided by defining a trait and using mix-in composition (see Section 3.1).

The function takes a list of values as an argument and returns a SESSL object that contains
both the name of the parameter and the values that shall be assigned to it. This makes
constructs like scan("r1" <∼ (0.5, 1, 1.5)) possible, where scan is another function
provided by the SESSL core, to set up parameter scans.

Line 8 specifies that ten replications shall be executed per model parameterization. Each
simulation run is only stopped after at least one second of wall-clock time has passed and
the simulation time of 104 time units has been reached (l. 9). AfterWallClockTime and
AfterSimTime are case classes (see Section 2.2). The function ‘and’ between them aggregates
both criteria to an internal object representing a conjunction (an ‘or’ function is available
too). This syntax facilitates the definition of arbitrarily nested stopping criteria. Also note
that the instantiation of AfterWallClockTime makes use of default and named parameters:
e.g., hours has default value 0 and is omitted (see Section 2.2).

The amount of a chemical species A within the model shall be observed (l. 10) during
the simulation time interval [100, 9000] at equidistant time points (50 time units apart, l.
11). The functions used in these two lines are provided by the mixed-in trait Observation
(l. 5, see Section 2.3.1). Using, for example, observe in an experiment without mixing in
Observation would cause a compile error.

After each run, the trajectory for A is printed to the standard output (l. 12–14). The
event handling code in line 13 defines a function that takes the result of a single run as an
argument. It is passed to the result handling function withRunResult (see Section 2.3.4),
which stores it for later invocation. The expression result ∼ "A" (l. 13) calls the method
∼ of object result with the argument "A". This returns the trajectory observed for A.

2.4.2. Switching between Simulation Systems. To minimize confusion when switching to an-
other simulation system, concrete types should always have the same name as the SESSL
type they inherit from, but without the prefix ‘Abstract’. This means in case a common
format is used for model specification, e.g., SBML [Hucka, M. et al. 2003], one can ‘port’
an experiment specification from one system to another by merely replacing the import
statement for the binding. This is illustrated in Figure 4 (see import sessl.sbmlsim. , l.
3, and import sessl.james. , l. 9).

Switching between different interpretations of Scala code by package names is a widely
adopted technique. For example, it is also used in the Scala collections API, where packages
named mutable and immutable contain types of the same name.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Roland Ewald, Adelinde M. Uhrmacher

2.4.3. Extending SESSL. The only type that must be provided by a binding is a sub-class
of AbstractExperiment, which should be named Experiment (see Figure 1). Additional
experiment facets are supported by inheriting from the corresponding abstract types in the
SESSL core. We selected the currently supported experiment facets (e.g., for observation,
parallel execution, or performance analysis) based on features provided by the experimen-
tation layer of JAMES II, which already offers a powerful programming interface to set up
experiments [Himmelspach et al. 2008; Ewald et al. 2010].

sessl.jamessessl

«trait»
Algorithm

«trait»
RNG

«trait»
...

«trait»
Simulator

«trait»
SSA

«trait»
Approximation

«trait»
_TauLeaping

«trait»
_NextReactionMethod

«trait»
JAMESIIAlgo

«trait»
BasicJAMESIISimulator

«trait»
BasicJAMESIIEventQueue

«trait»
...

«case class»
NextReactionMethod

«case class»
Heap

Fig. 5. Super types of sessl.james.NextReactionMethod and their relations. Cross-package inheritance
relations of several other types (e.g., Heap) are omitted for clarity.

Figure 5 shows how new classes can be added to represent concrete algorithm implementa-
tions (see Section 2.3.3). The marker traits defined in package sessl are system-independent
and should be used to categorize available implementations. Marker traits that refer to spe-
cific algorithms are prefixed with ‘ ’, to distinguish them from actual implementations. If
a default implementation of a well-known algorithm is provided, one should therefore just
omit the prefix ‘ ’ in its name, as done with sessl.james.NextReactionMethod (see Fig-
ure 5). This makes the algorithm representation easy to find, e.g., by the code completion
mechanism of an integrated development environment (IDE).

The other types defined by the binding, i.e., in package sessl.james (see Figure 5), shall
make the representation of additional implementations as simple as possible. Since JAMES
II itself distinguishes between plug-in types and plug-ins (see [Himmelspach and Uhrmacher
2007]), this is reflected by an additional layer of sub-types (e.g., BasicJamesIISimulator),
one for each plug-in type that needs to be configurable by the user. Each case class (e.g.,
NextReactionMethod) represents a plug-in and hence merely points to the corresponding
JAMES II factory. Since Scala’s notation for new types is concise — most types in Figure 5
are defined with a single line of code — it can be easily used to represent additional knowl-
edge on simulation approaches. Bindings for other complex simulation systems can follow
a similar approach. Note that the intricacies of the algorithm type hierarchy are mostly
transparent to experimenters, while it still allows to check the correctness of a configura-
tion. For example, an experimenter who tries to use a simulation algorithm as a random
number generator provokes a compile error and is thus notified immediately.

Bindings may also offer shorthand notations to conveniently access results, such as the
method ∼ to access a variable’s trajectory (see Figure 3, l. 13). To support this, SESSL pro-
vides some auxiliary traits that can be mixed into new result aspect types, so that standard
mathematical functions (e.g., min, max) can be reused, as well as a simple way to select

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:11

result sub-sets. For example, the construct results.having("r1" <∼ 0.7).max("A") se-
lects the maximal (last-observed) value of A for all simulation runs where the model variable
r1 has been set to 0.7, i.e., this simplifies the aggregation over result sub-sets (see Supple-
mentary Material, Section C).

3. SAMPLE EXPERIMENTS

3.1. Testing Simulation Software

Consider a scenario where a new auxiliary data structure is developed for a simulation
algorithm. For example, the default event queue implementation shall be replaced by a
heap. Besides employing unit tests to check whether individual functions of the new heap
work, integration tests should check whether it also works in its execution context. One
possibility is to let the simulation algorithm run with both its default data structure and
the new heap implementation, and to compare their results afterwards. However, if setting
up suitable simulation experiments is too difficult, developers may neglect integration testing
altogether and thereby increase the risk of undiscovered bugs. The larger and more complex
a simulation system becomes, the more simulation experiments are required for integration
testing, and the more effort is required to specify and maintain them. Using SESSL is
beneficial in this context, as its experiment specifications are rather short, concise, and
reusable across simulation systems. This allows, for example, to define a ‘test library’ of
useful simulation experiments for integration testing. The relevant experiments would just
need to be ‘instantiated’ for the simulation system under testing, saving its developers much
programming effort.

Figure 6 shows some code to illustrate this way of using SESSL. At first (l. 4–16), a new
trait SomeTestSetup is specified, which uses a self-type (l. 5) to declare which (abstract)
experiment facets it relies on (see Figure 1). It then configures the experiment specifics (l.
6–15) in the same way as seen before in Figure 3. The only new specification elements refer
to result reporting (provided by trait AbstractReport, see Figure 1), which allows to build
a report document from experiment results (l. 12–14). Here, a new section titled Results is
declared, which contains a histogram of the (last) observed amounts of species S3 for each
of the 200 replications. The user may also specify axis labels and a title. How the report is
generated depends on the simulation system at hand. JAMES II currently uses LATEX, R,
and Sweave [Leisch 2002].5

To (re-)use this pre-specified experiment, a developer simply creates a custom class that
extends Experiment and mixes in SomeTestSetup (as well as all concrete traits it requires,
provided by the binding). In this example, ParallelExecution is additionally mixed in
to speed up experiment execution (l. 22, see Section 3.3.1), and a constructor is defined
that specifies to use a single simulator (l. 24) and to name the result report accordingly
(l. 25). The rest of the sample code (l. 28–33) illustrates how experiments for two con-
figurations of the Next Reaction Method (a stochastic simulation algorithm for chemical
reaction networks [Gibson and Bruck 2000]) — with and without our hypothetical new heap
implementation — can be instantiated (l. 28–29), executed (l. 32), and evaluated (l. 33).

The approach sketched out in Figure 6 allows to reuse testing and evaluation code across
simulation systems. In other words, one separates the concern of experiment specification
from the concern of experiment execution. Such a separation implies that changes in the
API of a simulation system only need to be addressed in its SESSL binding, but not in
the experiment specifications as such. This reduces the effort of maintaining extensive test
batteries.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Roland Ewald, Adelinde M. Uhrmacher

1 //Independent of a simulation system (e.g. provided by a test library):
2 import sessl._
3

4 trait SomeTestSetup {
5 this: AbstractExperiment with AbstractObservation with AbstractReport =>
6 model = "./some.model.file"
7 replications = 200
8 stopTime = 1.5
9 observe("S3")

10 observeAt(1.4)
11 withExperimentResult { result =>
12 reportSection("Results") {
13 histogram(result("S3"))(title = "Species #3 after 1.4 s")
14 }
15 }
16 }
17

18 //Dependent on concrete simulation system:
19 import sessl.james._
20

21 class JTestSetup(simulatorUnderTest: Simulator)
22 extends Experiment with Observation with ParallelExecution
23 with Report with SomeTestSetup {
24 simulator = simulatorUnderTest
25 reportName = "Results of " + simulator
26 }
27

28 val expDefaultSetup = new JTestSetup(NextReactionMethod())
29 val expHeapSetup = new JTestSetup(NextReactionMethod(eventQueue = Heap()))
30

31 //Independent of a simulation system (e.g. provided by a test library):
32 execute(expDefaultSetup, expHeapSetup)
33 someStatisticalTest(expDefaultSetup.results, expHeapSetup.results)

Fig. 6. A generic simulation experiment specification and how it can be reused for integration tests.

3.2. Runtime Performance Analysis

Another application scenario for SESSL is the runtime performance analysis of simulators.
Such analyses are often carried out by the developers themselves, e.g., to evaluate the
runtime performance of a newly implemented algorithm. Obtaining performance data on a
large scale is also crucial for realizing automatic simulator selection and configuration [Ewald
2011].

The experiment in Figure 7 relies on two additional experiment facets,
PerformanceObservation and Report (l. 2), but Observation is not mixed in (i.e.,
no simulation output will be recorded). After specifying the model, a fixed stop time, and
the number of replications (l. 3–5), the representation of algorithms as case classes (see
Section 2.3.3) is used to declare two distinct sets of simulation configurations, tlSetups
and nrSetups (l. 7–9). Here, tlSetups contains four configurations of τ -Leaping (an
approximative simulation algorithm for chemical reaction networks [Cao et al. 2006]) with
its parameter ε ∈ {0.02, 0.03, 0.04, 0.05}, and nrSetups contains four configurations of
the Next Reaction Method with different event queues. Assigning the simulator sets to

5Some sample plots are shown in the Supplementary Material, Section A.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:13

1 execute {
2 new Experiment with PerformanceObservation with Report {
3 model = "java://examples.sr.LinearChainSystem"
4 stopTime = 1.5
5 replications = 20
6

7 val tlSetups = TauLeaping() scan ("epsilon"<∼range(0.02,0.01,0.05))
8 val nrSetups = NextReactionMethod() scan {
9 "eventQueue"<∼(BucketQueue(),LinkedList(),Heap(),SortedList())}

10

11 simulators <∼ (nrSetups ++ tlSetups)
12 executionMode = AllSimulators
13

14 reportName = "Sample Performance Report"
15 withExperimentPerformance { r =>
16 reportSection("Results") {
17 boxPlot(r.runtimesForAll)("Run times for all setups")
18 boxPlot(("TL", r.runtimes(tlSetups)), ("NRM", r.runtimes(nrSetups)))(

title="Run time comparison for algorithm families")
19 }
20 }
21 }
22 }

Fig. 7. A performance analysis experiment for JAMES II.

additional user-specified values facilitates a latter distinction during report creation (l.
18), but is not required. Line 11 joins both sets and specifies them as the simulators to
be used. At this point, the experiment specification is slightly ambiguous: should each of
the specified simulators execute 20 replications, or should there be 20 replications overall,
with the simulation system being able to pick freely among the alternative algorithms
stored in simulators? Since erring on the second side does not result in overly long
simulation experiments, this is the default SESSL behavior, i.e., the given replication
condition (in this case, a fixed number) has to be satisfied just once, and the simulation
system may choose any setup from simulators to simulate the model. In case the
experimenter intends the other interpretation, in which all simulators are applied to the
given experiment specification one after another, each having to fulfill the replication
conditions, this can be specified by setting the executionMode to AllSimulators (l. 12).
In this example, it means that each of the eight simulators executes the model 20 times.
The performance measurements are included in a result report, which is done by calling the
withExperimentPerformance function (l. 15–20), provided by PerformanceObservation.
In line 16, a single report section named Results is created. It contains a box plot for the
run times of all individual setups, and a second box plot in which the run times of the
τ -Leaping setups are compared to the run times of the Next Reaction Method setups (see
Supplementary Material, Section A).

Only execution times are considered so far, but this could be easily extended to other
runtime performance aspects (e.g., memory consumption). Moreover, other performance
metrics may call for entirely new experiment facets, as they require additional configuration
(e.g., processor utility or event throughput).

3.3. Integration of Simulation Tools

So far, all sample experiments relied on the SESSL binding for JAMES II. To show how
other simulators can be integrated, we developed SESSL bindings for version 1.0 of SBML-

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Roland Ewald, Adelinde M. Uhrmacher

1 import sessl._
2 import sessl.sbmlsim._
3

4 execute {
5 new Experiment with ParallelExecution with Observation
6 with sessl.james.Report {
7 model = "./BIOMD0000000002.xml"
8 set("kr_0" <∼ 8042)
9 scan("kf_2" <∼ range(30000, 1000, 34000), "kr_2" <∼ (650, 750))

10 stopTime = .01
11 observe("x" ∼ "ILL", "y" ∼ "DLL")
12 observeAt(range(0, 1e-04, 1e-02))
13 simulator = DormandPrince54(stepSize = 1e-06)
14 reportName = "SBMLsimulator Report"
15 withRunResult { result =>
16 reportSection("Run Number " + result.id) {
17 linePlot(result ∼ "x", result ∼ "y")(title = "Integration Results")
18 }
19 }
20 }
21 }

Fig. 8. A SESSL experiment for SBMLsimulator.

simulator [Dräger et al. 2012] and version 4.2.2 of OMNeT++ [Varga 2001]. To show how
SESSL can serve as a unified interface for other tasks, such as simulation-based optimiza-
tion, we integrated the Opt4J framework for meta-heuristic optimization [Lukasiewycz et al.
2011]. To show how specific methods provided by libraries can be reused, we integrated some
functionality of the SSJ library for stochastic simulation [L’Ecuyer et al. 2002].

3.3.1. SBMLsimulator. SBMLsimulator is a Java-based software that offers several numeri-
cal integrators to simulate SBML models. Figure 8 shows a SESSL experiment specification
for SBMLsimulator, defined on a model from the Biomodels database [Li et al. 2010]. The
trait ParallelExecution (l. 5) specifies that the underlying simulation system may exploit
parallelism to speed up the simulation experiment. Note that the experimenter neither spec-
ifies what shall be parallelized (e.g., simulation runs, output analysis, result storage), nor
which particular parallelization approach to use. These details have to be implemented by
the simulation system at hand, but do not need to be exposed to experimenters.6 However,
experimenters may still specify how many of the available resources shall be used.

The function set(...) (l. 8) can be used to set certain model parameters to a fixed value
throughout the whole experiment. Then, a parameter scan over two model parameters,
kf 2 and kr 2, is defined (l. 9) and the observation of species ILL and DLL, accessible
as x and y in SESSL, is configured (l. 11–12). The function ∼ (l. 11) links model-specific
names, in this case ILL and DLL, to unique SESSL-specific names. This improves readability
and re-usability of specification fragments, as the SESSL names are used throughout the
experiment specification, e.g., to access experiment results (l. 17). Line 13 configures the
numerical integrator to be used. The last lines (l. 14–19) are concerned with result reporting:
for each run, a new report section for this run number is created, as well as a line plot to
display the trajectories of x and y.

6The version of SBMLsimulator we used does not support parallel execution, so this is realized by our
binding, see Section 3.3.4.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:15

1 import sessl._
2 import sessl.omnetpp._
3

4 execute {
5 new Experiment with Observation with EventLogRecording {
6 model = ("cqn.exe" -> "ClosedQueueingNetA")
7 set("*.numTandems" <∼ 2, "*.numQueuesPerTandem" <∼ 3)
8 replications = 2
9 stopCondition = AfterSimTime(hours = 10) or AfterWallClockTime(seconds = 10)

10 warmup = Duration(seconds = 20)
11 observeAt(range(1000, 100, 30000))
12 observe("**.queueLength")
13 scan("*.queue[*].numInitialJobs" <∼ (2, 4),
14 "*.sDelay" <∼ range("%ds", 2, 2, 8) and
15 "*.qDelay" <∼ range("%ds", 2, 2, 8) and
16 "*.queue[*].serviceTime" <∼ range("exponential(%ds)", 2, 2, 8))
17 }
18 }

Fig. 9. A SESSL experiment for OMNeT++.

Note that this specification also relies on JAMES II for result reporting; its Report trait
is mixed into the SBMLsimulator experiment (l. 6). This is necessary because SBMLsim-
ulator does currently not provide a custom reporting mechanism, i.e., there is no trait
sessl.sbmlsim.Report to be mixed in, so the experiment specification would not compile
(unless lines 14 and 16–18 are removed). In JAMES II, report generation is separated from
the experimentation layer and can be used to report data from any source, including any
other SESSL experiment. The functions provided by the report trait of the JAMES II bind-
ing work on data types defined in the SESSL core, which allows to easily and safely reuse
functionality across different simulation systems. This example shows how a single SESSL
experiment makes two of these systems interoperable — without requiring the experimenter
to learn a new API and without any changes to the simulation systems themselves.

3.3.2. OMNeT++. In contrast to SBMLsimulator, the simulation framework OMNeT++
is written in C++, primarily targeted at network simulations, and already offers a powerful
external DSL for experimentation. External DSLs are not implemented in a programming
language, i.e., unlike embedded DSLs they do not rely on the syntax of a host language and
therefore require a custom parser. Nevertheless, one can use SESSL to control OMNeT++
simulation experiments. As OMNeT++ does not provide a Java interface to trigger simula-
tion experiments,7 the binding generates an omnetpp.ini file that specifies the experiment
to be conducted, runs OMNeT++ as an external process, and reads back the results from
the output files after each simulation run.

A sample SESSL experiment for OMNeT++ is shown in Figure 9. It illustrates that
experiments for simulation tools as conceptually and technologically different as, for exam-
ple, JAMES II and OMNeT++, can still be specified in the same way. Furthermore, some
specifics of OMNeT++ and its custom experimentation DSL can be easily accommodated
by the SESSL syntax. For example, OMNeT++ facilitates the specification of observation
variables by pattern matching (note the wildcard asterisks in l. 7 and 12–16, Figure 9) and
by supporting probability distributions (see l. 16). OMNeT++ variable assignments may
also include time units (l. 14–16), so that the range function is used here to generate a
sequence of strings.

7Java-based model entities are supported in OMNeT++ via jsimplemodel, see [Varga 2011, p. 9].

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Roland Ewald, Adelinde M. Uhrmacher

The first model parameter shall be scanned for two values (l. 13). The other three param-
eters (l. 14–16) shall be changed in unison, so they are joined together by an ‘and’ function
(l. 14–15), which is provided by the SESSL core. Thus, to specify a full-factorial experiment
instead, one would simply replace the ‘and’ invocations with commas. All parameters that
are grouped via ‘and’ must have the same number of values to scan. This is checked at
runtime by the SESSL core. There can be arbitrarily many parameters, and they can be
combined arbitrarily in this manner. The corresponding omnetpp.ini file generated by the
specification in Figure 9 is shown in the Supplementary Material, Section B.

Future versions of this binding could support additional language elements to make the
specification of observables, time units, and probability distributions less error-prone than
using strings. Inspiration for such elements could be drawn, for example, from recent work
on instrumentation languages [Helms et al. 2012]. The OMNeT++ binding also exposes
some additional features like recording a complete event log (via an additional trait, l. 5) or
removing observations that fall within the warm-up period (l. 10). Also note that both an
executable and a network description file have to be given as a ‘model’ (l. 6). However, there
are several other interesting features for specifying OMNeT++ experiments that are not
yet supported, e.g., constraints on the parameter space (see [Varga 2011, p. 240 et sqq.]).

3.3.3. Opt4J & SSJ. The meta-heuristic optimization framework Opt4J [Lukasiewycz et al.
2011] offers several methods for simulation-based optimization, e.g., evolutionary algorithms
and simulated annealing. To facilitate the integration of such tools, we developed a generic
optimization interface for SESSL. The interface allows us to use optimization software with
any simulation system that provides a SESSL binding, since they are all accessible through
a common software layer. This saves the effort to develop optimization support for each sim-
ulation system individually. Our optimization interface retains maximal flexibility regarding
the question of what to optimize, but is not yet feature-complete.8

Other simulation-related tools can be integrated via dedicated experiment facets, i.e.,
no additional SESSL interfaces are required. This allows, for example, to provide sup-
port for individual methods from software like the Stochastic Simulation in Java (SSJ)
library [L’Ecuyer et al. 2002]. We integrated SSJ’s methods for function approximation by
providing an SSJ-specific experiment facet called SSJOutputAnalysis. Additionally, we in-
tegrated its methods for generating various kinds of LATEX-based charts, by providing an
implementation of the AbstractReport trait (see Figure 1), similar to sessl.james.Report
(see Section 3.3.1).

Figure 10 shows an adapted experiment from [Ewald et al. 2010], but now specified with
SESSL and using three software systems (not just JAMES II): it relies on JAMES II for
simulation, on Opt4J for multi-objective optimization, and on SSJ for function approxima-
tion. The first few lines (l. 1–5) of the experiment import the SESSL core (l. 1), the generic
optimization interface (l. 2), and the bindings for JAMES II, Opt4J, and SSJ (l. 3–5). Line
8 invokes the optimize function from SESSL’s optimization interface, to declare the ob-
jectives runtime and error, both of which shall be minimized (min, l. 8). Additionally, an
objective function (l. 9–31) is passed to the optimize function. It takes two arguments:
a container with its parameter values (params, l. 8) and a container to store its value(s)
(objectives, l. 8). The objective function executes a SESSL experiment (l. 10–30) based
on the values in params (e.g., see l. 14) and stores the relevant results in objectives (e.g.,
see l. 24).

How to solve the optimization problem is specified by invoking the method using (l.
32), also provided by SESSL’s optimization interface. It accepts a configuration for some
optimization tool (here: Opt4J, l. 33) and applies it to the given problem. Opt4J is configured
to use an evolutionary algorithm (l. 38), to print the results of the optimization (l. 39), and

8For example, one could add support for constraints, see [Law 2006].

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:17

1 import sessl._ // SESSL core
2 import sessl.optimization._ // SESSL support for simulation-based optimization
3 import sessl.james._ // JAMES II binding
4 import sessl.opt4j._ // Opt4J binding
5 import sessl.ssj._ // SSJ binding
6

7 //Minimize both run time and error:
8 optimize(("runtime",min),("error",min)) { (params, objectives) =>
9 execute {

10 new Experiment with Observation with DataSink
11 with PerformanceObservation with SSJOutputAnalysis {
12

13 model = "file-sr:/./SimpleModel.sr" // Basic setup
14 set("r1" <∼ params.get("synthRate"))
15 stopTime = 100000
16

17 observe("A") // Model instrumentation
18 observeAt(range(10000, 1000, 99000))
19

20 dataSink = MySQLDataSink(schema = "test_experiment") // Data storage
21 simulator = TauLeaping(epsilon = params.get("eps")) // Simulation algorithm
22

23 withRunPerformance { perf => // Store runtime to objectives
24 objectives("runtime") <∼ perf.runtime
25 }
26 withRunResult { result => // Calculate error with SSJ, store to objectives
27 objectives("error") <∼ Misc.rmse(result.trajectory("A"),
28 fitAndEval(result.trajectory("A"), Polynomial(params.get("deg"))))
29 }
30 }
31 }
32 } using {
33 new Opt4JSetup {
34 param("synthRate", 1.0, 10.0) // Optimization parameters may refer to model,
35 param("eps", 0.01, 0.09) // simulator, or
36 param("deg", 1, 4) // output analysis (for example).
37

38 optimizer = EvolutionaryAlgorithm(generations = 20, alpha = 30)
39 withOptimizationResults { r => println(r) } // Print results to stdout
40 }
41 }

Fig. 10. Using Opt4J for the multi-objective optimization of a JAMES II simulation, and SSJ to calculate
the objective.

to optimize three kinds of parameter at once (l. 34–36): synthRate is a model parameter
(l. 14), eps is a simulator parameter (l. 21), and deg is a parameter for the result analysis
(l. 28). The result analysis (l. 23–29) consists of a result handler to observe the simulator’s
run time, which is one optimization objective (l. 24), and a result handler for the observed
simulation output, which calculates the second optimization objective (l. 26–29). The second
objective, error, is defined as the root-mean-square error (RMSE) between the observed
trajectory of species A and its deg-th degree polynomial fit (l. 27–28). While this example
is a little contrived (no need to optimize deg, the fit of a polynomial can only improve
as its degree increases), it shows the flexibility of specifying simulation-based optimization
experiments with SESSL.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Roland Ewald, Adelinde M. Uhrmacher

execute {
new Experiment {
// (SESSL constructs...)
james2Experiment.setBackupEnabled(true) // Direct call to JAMES II API
}
}

Fig. 11. Mixing SESSL constructs and custom code. The method james2Experiment enables direct access
to the experimentation API. In contrast to general SESSL constructs, which are provided by the SESSL
core, this method is defined in the JAMES II binding.

SSJ is invoked by the method fitAndEval (l. 28), which is provided by the trait
SSJOutputAnalysis (l. 11) from its SESSL binding. Additional case classes like Polynomial
are also provided by the binding, so that users can specify which approximation form to
use. This kind of integration is easy to generalize: tools for specific experiment-related tasks
(e.g., numerical analysis, statistics) could simply provide a new trait that can be mixed into
SESSL experiments. If multiple tools provide similar interfaces for which no abstract trait
exists yet, an abstract trait for this experiment facet should be included in SESSL’s core,
thereby growing the language (see Section 2.1).

Finally, the sample experiment also relies on the experiment facet DataSink (l. 10),
which specifies that all observed simulation output should also be stored. For this, an
experimenter must configure the data sink to be used (l. 20). A data sink is represented like
any other SESSL algorithm (see Section 2.3.3). Here, the experimenter chooses a MySQL
database. While a database schema is specified, the uniform resource locator (URL) and user
credentials are not set explicitly, i.e., default parameter values are used (see Section 2.2).

3.3.4. Integration Cost. Although SESSL brings many useful features, a new binding has to
be developed for each simulation tool. Developing such a binding for SBMLsimulator and
OMNeT++ required about two and four single-developer workdays, respectively. Adding
support for Opt4J took about three days, and adding support for function approximation
and reporting via SSJ took about one day. We were not familiar with these software systems
on a technical level. The time spans thus include understanding the APIs, developing the
bindings as such, and specifying test experiments.

These efforts are comparatively small, considering their gains. For example, to the best of
our knowledge SBMLsimulator does currently not support the configuration of parameter
scans or optimization experiments, but both is now possible via SESSL. We could also
easily realize a parallel execution of SBMLsimulator’s runs and improved the observation of
simulation output by automatically discarding irrelevant recorded data. Also, as mentioned
before, SBMLsimulator output can now be included in result reports, with JAMES II or
SSJ. The other software systems benefit from SESSL in a similar manner, particularly with
respect to their interoperability.

Still, the current version of the SBMLsimulator binding merely consists of five files, con-
taining 250 lines of code (LoC) overall. This brevity is made possible by several auxiliary
data structures and default implementations provided by SESSL. For OMNeT++, on the
other hand, no Java-compatible programming interface was available, which increased the
complexity of the binding (ca. 500 LoC), even though it relies on the same auxiliary data
structures as the SBMLsimulator binding. The bindings for Opt4J and SSJ consist of ca.
300 LoC and 100 LoC, respectively.

3.4. Customized Usage

As argued in Section 1, a major advantage of using an embedded DSL as a software layer
between users and simulation systems is that experiments can be complemented by custom

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:19

code. To realize this in SESSL, binding developers just need to make the actual experimen-
tation API of the simulation system accessible. For JAMES II, this is done by providing a
method james2Experiment that returns the JAMES II-specific object representing a sim-
ulation experiment. The code in Figure 11, for example, configures the ad-hoc experiment
backup mechanism of JAMES II.

Accessing system-specific functionality this way should not be considered good practice in
general, as it hampers re-use. On the other hand, there are many situations where simulation
system independence is less important than offering the flexibility of the original API. By
allowing ‘power users’ to add custom API calls, SESSL does not get in their way when it
comes to in-detail configuration of system-specific aspects, but still helps them to reduce
the boilerplate code for setting up simulation experiments.

4. DISCUSSION

We now describe how SESSL meets our requirements and discuss related work on domain-
specific languages and simulation experimentation.

4.1. Requirements Revisited

In Section 1, we argued that three issues hinder the establishment of standardized experi-
ment descriptions: 1) ‘cutting-edge’ experiments beyond the standard cannot be expressed,
2) dedicated tools are required (e.g., experiment editors), and 3) experiments may be un-
derspecified and thus not reproducible.

SESSL solves the first two problems and simplifies the third. The first problem is solved by
implementing an embedded DSL, and thus allowing to add custom code (Section 3.4). The
second problem is solved by implementing SESSL in Scala, a statically typed programming
language with tool support, e.g., for the Eclipse IDE [Dragos et al. 2013]. Powerful tooling
facilitates the adoption of a DSL [Zdun and Strembeck 2009, p. 32]. The third problem is
simplified by making the experiment specification dependent on a particular binding, which
must be declared by an import statement. Still, reproducibility cannot be guaranteed: the
behavior of a binding may change across versions. However, by explicitly associating ex-
periment specification and execution semantics (via import statements), this problem is
reduced to the well-known issue of dependency management. It can be solved, for example,
with software repositories. SESSL experiments can also be re-used across systems, by spec-
ifying them in a system-independent manner (see Section 3.1). However, two bindings may
interpret an experiment specification differently. System-independent test batteries can help
to detect these problems (see Section 3.1).

As mentioned in Section 2.1, SESSL should be easy to learn and use. We tried to strike a
good balance between simplicity and conciseness of the syntax (see Section 2.4). Issues like
result handling and algorithm configuration are resolved so that system-specific complexity
is encapsulated in the binding (see Section 2.3). Experiment composition (see Section 2.3.1)
allows users to learn SESSL step by step, as they only need to deal with relevant language
constructs for the task at hand. Regarding conciseness, a SESSL specification of the JAMES
II experiment presented in [Ewald et al. 2010] would be less than half as long, and even the
OMNeT++ experiment in Figure 9 is shorter than its corresponding omnetpp.ini file (see
Supplementary Material, Section B).

While using SESSL requires some learning, experimenters can rely on IDEs with auto-
matic code completion and incremental compilation for immediate feedback. We did not
yet evaluate the effectiveness of SESSL with a comparative user study. Future work could
approach this similarly to [Sobernig et al. 2011], where several implementations based on
framework APIs are compared with a DSL-based implementation (and it turns out that
DSLs can reduce development complexity).

To further improve user friendliness, the SESSL core thoroughly inspects each experiment
before execution. For example, it is checked whether all observation times fall within the

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Roland Ewald, Adelinde M. Uhrmacher

specified simulation time interval (if this is known beforehand). Such checks make it hard to
execute inconsistent experiments. Handling those issues is particularly relevant for embed-
ded DSLs: while the additional features provided by the host language give more freedom
to the user, they also increase the risk of making mistakes [Sloane 2008, p. 7].

SESSL is a stand-alone software, independent from any simulation system. It is exe-
cuted on the Java virtual machine, so that other software running on this platform can be
integrated easily (e.g., see Section 3.3.1). The SESSL core provides well-documented inter-
faces for binding developers and much of the general functionality. Developers communicate
the capabilities of a binding by choosing which experiment facets to implement (see Sec-
tion 2.3.2). By adding custom experiment facets, they may also help to evolve the language.
Being part of an embedded DSL, each facet may even provide custom sub-DSL(s) without
much integration effort [Zdun and Strembeck 2009, p. 29].

On the other hand, developing a new binding requires knowledge of Scala and SESSL,
and ultimately depends on the complexity of the simulation system to be integrated. Also,
integrating simulation software from another platform is more difficult (see Section 3.3.2)
and some SESSL features, e.g., the ability of adding custom code (see Section 3.4), may
be hard to realize. However, Java is one of today’s most popular software platforms and
integration across different platforms is a general problem. In principle, one could also re-
implement SESSL for other platforms, with a (more or less) similar syntax.

4.2. Related Work

4.2.1. Domain-Specific Languages. Zdun and Strembeck [Zdun and Strembeck 2009] name
several main DSL design decisions: the DSL development process (also see [Strembeck and
Zdun 2009]), the concrete syntax style, and the question of whether to use an embedded
or an external DSL. In their terminology, we started out with extracting SESSL from an
existing system, the experimentation layer of JAMES II [Himmelspach et al. 2008; Ewald
et al. 2010], and proceeded with a language model-driven development process. In the
nomenclature of Fowler, this means we now take a language-seeded approach: we sketch out
how we would like to specify certain kinds of experiment and then define the concrete syntax
as similar as possible [Fowler 2010, p. 41]. We chose a textual concrete syntax, as our target
group includes developers, who often prefer it over a graphical syntax [Zdun and Strembeck
2009]. Moreover, textual experiment specifications are often easier to handle, e.g., version
control systems are typically more convenient to use with simple text files. Finally, we chose
to realize an embedded DSL.

Embedded DSLs have already been identified by others as a promising technique to
facilitate scientific programming (e.g., [Hinsen 2013]), and are emerging for various domains,
such as systems biology modeling (e.g., PySB [Lopez et al. 2013], embedded in Python),
machine learning (e.g., OptiML [Sujeeth et al. 2011], embedded in Scala), and numerical
analysis (e.g., Liszt [DeVito et al. 2011], embedded in Scala). Other DSLs embedded in
Scala deal, for example, with database access [Garcia et al. 2010] or term rewriting [Sloane
2008]. Most Scala DSLs are complemented by compiler plug-ins, e.g., to generate platform-
dependent code [DeVito et al. 2011]. Future versions of SESSL could do the same, e.g., to
facilitate the integration of simulation systems from other platforms.

4.2.2. Simulation Experimentation. Historically, most DSLs for modeling and simulation have
been powerful external DSLs, also known as simulation (programming) languages (e.g., see
discussion in [Bruce 1997; Miller et al. 2010]), which provide features similar to general-
purpose programming languages, but extend these by additional constructs. For example, in
the realm of parallel discrete-event simulation, the APOSTLE language provides additional
simulation-specific constructs, e.g., to declare time delays and control parallelization [Bruce
1997]. To the best of our knowledge, none of these languages is targeted at the domain of
simulation experiments.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:21

Simulation experimentation is often supported by either providing an API with a user-
friendly syntax or an external DSL. For example, the simulation software STEPS is written
in C/C++, but provides a Python interface to set up experiments [Hepburn et al. 2012],
whereas OMNeT++ follows the second approach and offers an external DSL to set up
simulation experiments (see Section 3.3.2).

Other approaches to facilitate simulation experimentation take a more holistic view.
They strive to automate and document the whole process of conducting simulation stud-
ies in a certain domain, i.e., modeling, simulation, and data analysis, in order to avoid
errors and improve reproducibility and credibility [Perrone et al. 2009]. This approach is
realized by the SAFE framework, which is focused on automating experiments with the
network simulator ns-3 [Perrone et al. 2012]. It uses the ns-3 Experiment Description Lan-
guage (NEDL, see [Hallagan 2011]), which is based on the Extensible Markup Language
(XML). NEDL supports factorial experiments, constraints on valid factor combinations,
and termination conditions for single runs and replications (similar to stopCondition and
replicationCondition in SESSL, see Supplementary Material, Section C). SAFE itself
supports user management, a distributed execution of individual simulation runs, and sim-
ulation output storage and analysis. NEDL files are transferred to a remote execution service
and then translated into C++ and Python code. SAFE provides a web-based interface for
beginners, while power users can submit custom XML files and C++ simulation scripts via
command line. In principle, SESSL should be easy to integrate into systems like SAFE, as
it would simply provide an alternative to specify simulation experiments. When compared
to the external DSL that is currently used in SAFE (NEDL), SESSL (currently) offers
more features (e.g., support for performance experiments, simulation-based optimization)
and the ability for power users to add custom language constructs on the fly (‘growing’
the language). Also, the tooling for both languages implies different transitions from be-
ginner to power user: NEDL files are either generated via a web-based user interface or by
manually editing XML code, while SESSL experiments gradually become more complex,
by incorporating additional experiment facets. Finally, SESSL itself is system-agnostic and
allows to integrate multiple tools, also for a single simulation experiment.

Systems like SakerGrid [Kite et al. 2011] or MEG [Page et al. 2012] are similar to SAFE
in that their aim is to automate simulation experiment execution, but they are independent
of a specific simulation system and focus on large-scale distributed experiment execution
(e.g., on a grid). Both tools offer graphical user interfaces and some support for experiment
design (e.g., MEG includes support for simulation-based optimization), but (to the best of
our knowledge) they do not provide custom DSLs to set up simulation experiments. As with
SAFE, SESSL could be used for this task.

To integrate different kinds of simulation software, frameworks like the Open Simulation
Architecture (OSA) [Ribault 2011] allow a more principled and fine-granular reuse of func-
tionality than SESSL. Here, the main focus is on reusing model and simulator components,
but OSA can also be used to set up simulation experiments. This is done with an external
DSL, i.e., XML configuration files for the software management tool Maven.9 While this im-
proves both the reproducibility and the reusability of experiments, the corresponding XML
files are rather verbose [Ribault 2011, p. 104 et sqq.]. To support frameworks like OSA in
SESSL, the complexity of these configuration files would be encapsulated by its binding.

A different approach towards simulation software integration is taken by tools like the
Systems Biology Workbench (SBW) [Sauro et al. 2003], where various individual software
systems communicate via binary messages. SBWs main task is to provide the functionality
for service brokerage and (remote) method invocation. Therefore, its target audience are
developers rather than experimenters, who will then use the results of the integration (e.g., a
graphical model editor combined with a compatible simulator). SBWs architecture supports

9http://maven.apache.org

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

http://maven.apache.org

A:22 Roland Ewald, Adelinde M. Uhrmacher

distributed computing and provides interfaces for multiple platforms, e.g., C/C++ and
Java. Thus, a SESSL binding could use SBW’s Java interface to control simulators already
integrated into SBW. We consider this to be future work.

The systems biology community also endeavors to standardize simulation experiment
descriptions. For example, the simulation experiment description markup language (SED-
ML) [Waltemath et al. 2011] is an external DSL realized on top of XML. It is restricted
to models encoded in XML, since the model elements to change (e.g., parameter values)
are specified with XPath. An experiment description can involve multiple models and de-
fines arbitrarily many simulation runs, so-called tasks, to be performed with them. Result
reporting and observation are configured by declaring so-called data generators, which are
associated with a specific task and may, for example, produce plots. The current SED-ML
specification, Level 1 Version 2 [Bergmann et al. 2013], restricts simulation algorithms and
their parameterization to entities defined in the KiSAO ontology [Courtot et al. 2011], which
is focused on systems biology.

Future versions of SESSL could support SED-ML and other external DSLs for simulation
experiments (e.g., NEDL), by supporting the import and export of experiment descriptions
stored in this format. Moreover, these standardization efforts could benefit from the evo-
lution of new language constructs in SESSL, as it provides a convenient test-bed for the
iterative development of new description elements. At the same time, SESSL will also benefit
from these efforts, as they represent a thoroughly discussed consensus of best practice in a
(sub-)community. Following such agreements (e.g., regarding terminology) helps to prevent
an unregulated growth of custom experiment facets with similar functionality.

5. CONCLUSIONS

We argue that standardized descriptions for simulation experiments are not yet established
because 1) they do not allow for ‘cutting-edge’ experiments beyond the standard, 2) tool
support is often lacking, and 3) experiments may still not be reproducible (see Section 1). We
propose to address these problems by adding a separate software layer on top of simulation
systems, in the form of an embedded domain-specific language. To illustrate the advantages
of this approach, we introduce SESSL, a Scala-based domain-specific language for simulation
experiments. After describing the rationale behind its design and syntax (Section 2), we
illustrate its applicability (Section 3) and discuss its strengths in the context of related
approaches (Section 4).

SESSL facilitates experiment reuse across simulation systems (Section 3.1), the runtime
performance analysis of simulation (sub-)algorithms (Section 3.2), and other complex simu-
lation experiments, such as simulation-based optimization (Section 3.3.3). It can also enable
interoperability between components of different simulation systems (e.g., see Section 3.3.1).
SESSL currently integrates five software systems: the simulation systems JAMES II, OM-
NeT++, and SBMLsimulator, as well as the optimization framework Opt4J and the sim-
ulation library SSJ. Bindings for other software systems are straightforward to implement
(see Section 2.4.3).

We plan to broaden the scope of SESSL by supporting additional experiment facets and
simulation systems in the future. To foster adoption in the M&S community, SESSL is open
source (Apache 2.0 license). Its source repository is freely accessible at http://sessl.org.

6. ACKNOWLEDGMENTS

This research has been supported by the DFG (German Research Foundation), via research
project EW 127/1-1 (ALeSiA) and research training group 1387 (dIEM oSiRiS). We thank
the anonymous reviewers for their helpful comments.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

http://sessl.org

SESSL: A Domain-Specific Language for Simulation Experiments A:23

REFERENCES

Bergmann, F. T., Cooper, J., Le Novère, N., Nickerson, D., and Waltemath, D. 2013. Simulation ex-
periment description markup language (SED-ML): Level 1 version 2. http://sed-ml.org/documents/sed-
ml-L1V2.pdf.

Bruce, D. 1997. What makes a good domain-specific language? APOSTLE, and its approach to paral-
lel discrete event simulation. In Proceedings of the ACM SIGPLAN Workshop on Domain Specific
Languages. ACM, 17–35.

Cao, Y., Gillespie, D. T., and Petzold, L. R. 2006. Efficient step size selection for the tau-leaping
simulation method. The Journal of Chemical Physics 124, 4.

Courtot, M., Juty, N., Knupfer, C., Waltemath, D., Zhukova, A., Drager, A., Dumontier, M.,
Finney, A., Golebiewski, M., Hastings, J., Hoops, S., Keating, S., Kell, D. B., Kerrien, S.,
Lawson, J., Lister, A., Lu, J., Machne, R., Mendes, P., Pocock, M., Rodriguez, N., Villeger,
A., Wilkinson, D. J., Wimalaratne, S., Laibe, C., Hucka, M., and Le Novere, N. 2011. Controlled
vocabularies and semantics in systems biology. Molecular Systems Biology 7, 1.

Despeyroux, T. 2008. Evolution of ontologies and types. In Proceedings of the IADIS International Con-
ference WWW/Internet 2008, P. Isáıas, M. B. Nunes, and D. Ifenthaler, Eds. 419–422.

DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen, E., Ham,
F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., and Hanrahan, P. 2011. Liszt: a domain
specific language for building portable mesh-based PDE solvers. In Proceedings of the 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. SC ’11. ACM.

Dräger, A., Keller, R., Dörr, A., Tscherneck, S., Hofmann, U., Wrzodek, C., Funahashi, A.,
Tabira, A., Kandel, B., Klein, M., Thomas, M., Rodriguez, N., Le Novère, N., Zanger,
U. M., and Zell, A. 2012. SBMLsimulator: An efficient java solver implementation for SBML.
http://www.ra.cs.uni-tuebingen.de/software/SBMLsimulator, accessed 12/2013.

Dragos, I., Odersky, M., Bourlier, L., Dotta, M., Farwell, M., Miller, H., Molitor, E.,
Plociniczak, H., Russell, M., and Stocker, M. 2013. ScalaIDE for Eclipse. http://scala-ide.org,
accessed 12/2013.

Ewald, R. 2011. Automatic Algorithm Selection for Complex Simulation Problems. Vieweg + Teubner.

Ewald, R., Himmelspach, J., Jeschke, M., Leye, S., and Uhrmacher, A. M. 2010. Flexible experimen-
tation in the modeling and simulation framework JAMES II–implications for computational systems
biology. Briefings in Bioinformatics 11, 3, 290–300.

Fowler, M. 2010. Domain-Specific Languages 1st Ed. Addison-Wesley Professional.

Garcia, M., Izmaylova, A., and Schupp, S. 2010. Extending scala with database query capability. Journal
of Object Technology 9, 45–68.

Gibson, M. A. and Bruck, J. 2000. Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels. The Journal of Chemical Physics 104, 1876–1889.

Hallagan, A. W. 2011. The design of XML-based model and experiment description languages for network
simulation. Bachelor’s thesis, Department of Computer Science, Bucknell University.

Helms, T., Himmelspach, J., Maus, C., Röwer, O., Schützel, J., and Uhrmacher, A. M. 2012. Toward
a language for the flexible observation of simulations. In Proceedings of the 2012 Winter Simulation
Conference, C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, Eds. IEEE.

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. 2012. STEPS: efficient simulation of stochastic
reaction-diffusion models in realistic morphologies. BMC Systems Biology 6, 36.

Himmelspach, J., Ewald, R., Leye, S., and Uhrmacher, A. M. 2010. Enhancing the scalability of sim-
ulations by embracing multiple levels of parallelization. In Proceedings of the Second International
Workshop on High Performance Computational Systems Biology (HiBi’10). IEEE, 57–66.

Himmelspach, J., Ewald, R., and Uhrmacher, A. M. 2008. A flexible and scalable experimentation layer.
In Proceedings of the 2008 Winter Simulation Conference, S. Mason, R. Hill, L. Moench, and O. Rose,
Eds.

Himmelspach, J. and Uhrmacher, A. M. 2007. Plug’n simulate. In Proceedings of the 40th Annual Sim-
ulation Symposium. IEEE CS, 137–143.

Hinsen, K. 2013. A glimpse of the future of scientific programming. Computing in Science & Engineer-
ing 15, 1, 84–88.

Hucka, M. et al. 2003. The systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 19, 4, 524–531.

Hudak, P. 1996. Building domain-specific embedded languages. ACM Computing Surveys 28, 4es, 196.

Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., Gavaghan, D., and
Emmott, S. 2013. Troubling trends in scientific software use. Science 340, 6134, 814–815.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Roland Ewald, Adelinde M. Uhrmacher

Kite, S., Wood, C., Taylor, S. J. E., and Mustafee, N. 2011. SakerGrid: simulation experimentation
using grid enabled simulation software. In Proceedings of the 2011 Winter Simulation Conference,
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, Eds.

Law, A. 2006. Simulation Modeling and Analysis fourth Ed. McGraw-Hill Publishing Co.

L’Ecuyer, P., Meliani, L., and Vaucher, J. 2002. SSJ: A framework for stochastic simulation in Java. In
Proceedings of the 2002 Winter Simulation Conference, E. Yücesan and C. H. Chen, Eds. IEEE.

Leisch, F. 2002. Sweave: Dynamic generation of statistical reports using literate data analysis. In Compstat
2002 - Proceedings in Computational Statistics. Physica Verlag, Heidelberg, 575–580.

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A.,
Stefan, M. I., Snoep, J. L., Hucka, M., Le Novère, N., and Laibe, C. 2010. BioModels Database:
An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Systems
Biology 4, 92.

Lopez, C. F., Muhlich, J. L., Bachman, J. A., and Sorger, P. K. 2013. Programming biological models
in Python using PySB. Molecular systems biology 9, 1.

Lukasiewycz, M., Glass, M., Reimann, F., and Teich, J. 2011. Opt4J: a modular framework for meta-
heuristic optimization. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’11. ACM, 1723–1730.

Merali, Z. 2010. Computational science: ...error. Nature 467, 775–777.

Miller, J. A., Baramidze, G. T., Sheth, A. P., and Fishwick, P. A. 2004. Investigating ontologies for
simulation modeling. In Proceedings of the 37th Annual Simulation Symposium. IEEE CS.

Miller, J. A., Han, J., and Hybinette, M. 2010. Using domain specific language for modeling and
simulation: ScalaTion as a case study. In Proceedings of the 2010 Winter Simulation Conference,
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, Eds. IEEE.

Odersky, M., Spoon, L., and Venners, B. 2011. Programming in Scala 2nd Ed. Artima.

Odersky, M. and Zenger, M. 2005. Scalable component abstractions. In Proceedings of the 20th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
’05). ACM, 41–57.

Page, E. H., Litwin, L., McMahon, M. T., Wickham, B., Shadid, M., and Chang, E. 2012. Goal-
Directed Grid-Enabled computing for legacy simulations. In IEEE International Symposium on Cluster
Computing and the Grid. IEEE, 873–879.

Pawlikowski, K., Jeong, H. D. J., and Lee, J. S. R. 2002. On credibility of simulation studies of telecom-
munication networks. IEEE Communications Magazine 40, 1, 132–139.

Perrone, L. F., Cicconetti, C., Stea, G., and Ward, B. C. 2009. On the automation of computer network
simulators. In Proceedings of the 2nd International Conference on Simulation Tools and Techniques.
SIMTUTools ’09. ICST.

Perrone, L. F., Main, C. S., and Ward, B. C. 2012. SAFE: simulation automation framework for ex-
periments. In Proceedings of the 2012 Winter Simulation Conference, C. Laroque, J. Himmelspach,
R. Pasupathy, O. Rose, and A. M. Uhrmacher, Eds. IEEE.

Ribault, J. 2011. Reuse and scalability in modeling and simulation software engineering. Ph.D. thesis,
Université de Nice Sophia-Antipolis.

Sauro, H. M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., and Kitano, H. 2003.
Next generation simulation tools: The systems biology workbench and BioSPICE integration. OMICS:
A Journal of Integrative Biology 7, 4, 355–372.

Sloane, A. M. 2008. Experiences with domain-specific language embedding in scala. In Proceedings of the
2nd International Workshop on Domain-Specific Program Development, J. Lawall and L. Reveillere,
Eds.

Sobernig, S., Gaubatz, P., Strembeck, M., and Zdun, U. 2011. Comparing complexity of API designs:
an exploratory experiment on DSL-based framework integration. In Proceedings of the 10th ACM
international conference on Generative Programming and Component Engineering. GPCE ’11. ACM,
157–166.

Strembeck, M. and Zdun, U. 2009. An approach for the systematic development of domain-specific lan-
guages. Software: Practice and Experience 39, 15, 1253–1292.

Sujeeth, A., Lee, H., Brown, K. J., Rompf, T., Chafi, H., Wu, M., Atreya, A., Odersky, M., and
Olukotun, K. 2011. OptiML: an implicitly parallel domain-specific language for machine learning. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11). 609–616.

van Deursen, A., Klint, P., and Visser, J. 2000. Domain-specific languages: an annotated bibliography.
SIGPLAN Notices 35, 6, 26–36.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

SESSL: A Domain-Specific Language for Simulation Experiments A:25

Varga, A. 2001. The OMNeT++ Discrete Event Simulation System. In Proceedings of the European Sim-
ulation Multiconference (ESM’2001). SCS Europe.

Varga, A. 2011. OMNeT++ User Manual Version 4.2.2. OpenSim Ltd. Last accessed 12/2013,
http://www.omnetpp.org/doc/omnetpp/Manual.pdf.

Waltemath, D., Adams, R., Bergmann, F., Hucka, M., Kolpakov, F., Miller, A., Moraru, I., Nick-
erson, D., Sahle, S., Snoep, J., and Le Novere, N. 2011. Reproducible computational biology ex-
periments with SED-ML - the simulation experiment description markup language. BMC Systems
Biology 5, 198.

Weber, M. and Kindler, E. 2003. The petri net markup language. In Petri Net Technology for
Communication-Based Systems, H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, Eds. Lecture Notes
in Computer Science Series, vol. 2472. Springer, 124–144.

Zdun, U. and Strembeck, M. 2009. Reusable architectural decisions for DSL design: Foundational deci-
sions in DSL development. In Proceedings of the 14th European Conference on Pattern Languages of
Programs.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Simulation Experiment Specification via a Scala Layer (SESSL)
	Requirements
	Why Scala?
	Language Design
	Experiment Composition
	Independence of Simulation Systems
	Representing Algorithms
	Result Handling

	Syntax & Features
	Introductory Example
	Switching between Simulation Systems
	Extending SESSL

	Sample Experiments
	Testing Simulation Software
	Runtime Performance Analysis
	Integration of Simulation Tools
	SBMLsimulator
	OMNeT++
	Opt4J & SSJ
	Integration Cost

	Customized Usage

	Discussion
	Requirements Revisited
	Related Work
	Domain-Specific Languages
	Simulation Experimentation

	Conclusions
	Acknowledgments

