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Background
Recent improvements in price and scalability of next-generation sequencing (NGS) make 
whole-exome and whole-genome sequencing (WES, WGS) feasible in clinical practice 
(e.g. [1, 2]). However, diagnosing WES and WGS cases is challenging. In a typical WES 
case, 25,000–75,000 of a patient’s genetic variants have to be narrowed down to a hand-
ful of relevant variants (e.g. [3, 4]; WGS increases these numbers ca. 30-fold). Even after 
considering population allele frequency [5], gene-phenotype associations [6], or other 
variant annotations, dozens of potentially relevant variants may be found in a case. A 
clinician has to manually review these variants in a time-consuming and cumbersome 
process [7]. Variant prioritization methods are being developed to allow the clinican to 
focus on those variants that are likely disease-causing [8].
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Variant prioritization methods are calculating numerical scores predicting the func-
tional impact of the patient’s variants [9]. For this, the methods make assumptions about 
how the degree of pathogenicity of a variant can be recognized [8]. For example, vari-
ants in highly conserved DNA regions are likely to be more damaging than variants in 
less conserved regions, or common variants in a large population are likely to be benign. 
The pathogenicity of a variant is typically expressed as a score. It is calculated by algo-
rithms like ontology propagation [10], decision trees [11], or Hidden Markov models 
[12], which in turn have been trained or calibrated with data from public databases (e.g., 
ClinVar [13], HPO [14]). The scores have to be interpreted using cutoffs for pathogenic-
ity specified by the authors of the respective method to classify the variants as benign or 
pathogenic [9]. The prioritization methods further differ in terms of their required input 
format for the variants and their software stack, e.g., fathmm-MKL [15] requires Python 
version 2.7 and uses tabix [16] whereas CADD [17] relies on bioconda [18] and 
snakemake [19] to orchestrate a combination of various scripts to retrieve the scores.

Each time a new method is developed, whether based on updated or new databases or 
by using a different algorithm, its effectiveness in identifying pathogenic variants needs 
to be evaluated based on different data sources, and, ideally, also compared to already 
existing methods [12, 17, 20]. Identifying the most suitable method for disease-specific 
gene panels [21, 22] or specific variation types, e.g., single nucleotide polymorphisms 
(SNP) or short insertions or deletions (INDELS) [23], also requires an evaluation and 
comparison of these methods.

A thorough evaluation of variant prioritization methods takes significant effort 
because 

1. the evaluation input data, consisting of the variants and their expected classification, 
needs to be converted into valid input for each method (e.g., VCF- or CSV-files),

2. the different software stacks of the methods have to be invoked individually, and
3. their outputs have to be converted into a common format, which can serve as the 

basis for comparison (e.g., by calculating sensitivity and specificity or plot receiver 
operator characteristic (ROC) curves).

These steps need to be repeated for each performance evaluation study.
To facilitate the evaluation of variant prioritization algorithms, we propose VPM-

Bench. VPMBench   is a test bench that allows us to compare the performance of pri-
oritization methods with little manual intervention by automating the steps outlined 
above. By this, the user can focus on compiling suitable evaluation datasets, developing a 
new variant prioritization method, and interpreting the results.

Implementation
The overall architecture of our test bench assembles a data pipeline [24] in which the 
variant prioritization methods are integrated as plugins.

To use our pipeline, the user provides the evaluation input data and specifies plugins, 
performance summaries, and metrics of interest. Our pipeline then parses the evalua-
tion input data, loads and invokes the plugins, collects their output, and calculates the 
summaries and metrics.
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The results are passed back as a performance report to the user for further process-
ing, e.g., generating visualizations or analyzing the results. An overview of the pipeline is 
shown in Fig. 1.

We implemented our VPMBench test bench using Python [25]. Thus, VPMBench 
test bench can be integrated into existing Python projects using the provided API. The 
source code can be found at https:// github. com/ IDEA- PRIO/ VPMBe nch. A thorough 
documentation is available at https:// vpmbe nch. readt hedocs. io/ en/ latest/.

In the following, we give a short overview of how the different steps of our pipeline 
and the plugin system have been implemented.

Input processing

In the first step, we transform the evaluation input data that contains the variant data and 
their expected classifications into an internal representation described in Table 1. In the 
resulting evaluation data, we assign each entry a unique numerical identifier (UID), allow-
ing us to reference the individual entries in our pipeline. Currently, our test bench provides 
generic extractors for arbitrary VCF- and CSV-based input formats. Using these extractors, 
we implemented extractors for two publicly available variant-disease databases, i.e., Clin-
Var [13] and the VariSNP benchmark database suite [26]. Finally, we validate the evaluation 
data according to the constraints shown in Table 1. If the validation of the evaluation data 
fails, we report an error to the user requiring to revise the evaluation input data. All variant 

Fig. 1 Overview of the VPMBench architecture

Table 1 Format of the evaluation data

Attribute Name Description Values

Unique Identifier UID The unique numerical identifier of the variant N
≥0

Reference Genome RG The reference genome used to call the variant String

Chromosome CHROM The chromosome in which the variant is found {1, . . . , 22, X, Y, M}

Position POS The 1-based position of the variant within the chromo-
some

N
≥1

Reference REF The reference bases {A, C, G, T}∗

Alternative ALT The alternative bases {A, C, G, T}∗

Variation type TYPE The variation type of the variant {SNP, INDEL}

Classification CLASS The expected classification of the variant {benign, pathogeneic}

https://github.com/IDEA-PRIO/VPMBench
https://vpmbench.readthedocs.io/en/latest/
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attributes in the evaluation data except the classification, i.e., UID, RG, CHROM, POS, REF, 
ALT, are forwarded as variant data to the methods.

Integrating variant prioritization methods

Variant prioritization methods are integrated as plugins, allowing to include new methods 
without changing the pipeline code. Each plugin consists of a manifest file and integration 
code for a method’s custom processing logic.

The manifest contains a declarative specification of meta-information about the method, 
i.e., its name, version, supported variation types, cutoff, supported reference genome, and 
the versions of associated databases and datasets. It also specifies an entry point to the pro-
cessing logic for our pipeline. The manifest is used to ensure that the evaluation is limited to 
variation types supported by the method so that VPMBench only calls it with valid data and 
can thus generate meaningful evaluation reports.

The custom processing logic is invoked as part of our pipeline to calculate a variant’s 
score. To ensure compatibility of the logic with the rest of our pipeline, we define an inter-
face that accepts variant data as input and returns a tuple (UID,score) for each variant.

The processing logic can be implemented from scratch using Python or be reused from 
Docker images. When using Python, VPMBench loads and executes the Python file speci-
fied as the entry point in the manifest. To reuse a Docker image the user specifies

• the name of the image,
• format and file paths of input and output files, and
• optional bindings to local files separating the processing logic in the image from 

required databases or indices, e.g, calculated by tabix [16], and
• a command which is executed to invoke the method in the Docker container (see List-

ing 1).

Our test bench uses this information to write the variant data in the expected input format 
of the method, to mount the input/output files and bindings, to run the Docker container, 
and to parse the output file for returning a set of UID and score pairs.

The key difference between the two approaches is the environment in which the method 
is executed. The Python code is executed in the same environment as the pipeline and thus 
allows to access methods under local development. In contrast, Docker containers provide 
a dedicated virtualized environment preventing any conflicts with locally installed software, 
e.g., conflicting Python versions [27], and also allow implementing the logic in any pro-
gramming language as long the implementation adheres to the interface described above. 
Currently, we provide a Docker-based plugin for CADD [17] and Python-based plugins for 
the non-coding and coding scores from fathmm-MKL [15] and 30 scores from the dbNSFP 
4.1a [28] (without fathmm-MKL and CADD).
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Invoking the variant prioritization methods

To invoke the variant prioritization methods, we rely on our plugin-based system which 
automatically discovers available plugins based on the manifest files and filters the 
plugins according to the plugin selection. The plugin selection is specified as a boolean 
function. This function has to return True when the plugin shall be invoked (see Listing 
2).
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1 # Run all plugins
2 lambda plugin: True
3

4 # Run only fathmm -MKL (non -coding)
5 lambda plugin: plugin.name == "fathmm -MKL (non -coding)"
6

7 # Run all variant priorization methods supporting INDELs
8 lambda plugin: "INDEL" in plugin.supported_variants
9

10 # Run all plugins not trained with HGMD data
11 from vpmbench.predicates import *
12 lambda plugin: not was_trained_with(plugin ,"HGMD")
13

Listing 2: Examples for the plugin selection.

Before running the custom processing logic of the plugins, we check the selected 
plugins for compatibility with the variant data by comparing the supported variation 
types and reference genome from the manifest with the corresponding information from 
the data. If this check fails, we report an error to the user requiring to revise the evalu-
ation input data. For example by liftover the genomic coordinates of the variants to the 
supported reference genome or remove invalid variation types. Next, we interpret the 
specified entry points from the plugins and run the custom processing logic of the meth-
ods in parallel. The outputs are collected and validated to ensure that each UID got a 
numerical score assigned, and are then used to annotate the variants with the scores.

Calculating performance summaries and performance metrics

Variant prioritization methods calculate scores. They are interpreted using the cutoff of 
the respective method to classify the variants as benign/neutral or pathogenic/deleteri-
ous. Thus, we can assess the performance of variant prioritization mechanisms similar 
to binary classifiers [29–31]. We first calculate performance summaries, e.g., confu-
sion matrices or receiver operator characteristic (ROC) curves [32, 33], by comparing 
the predicted and expected classification of variants. We calculate performance met-
rics quantifying the performance based on the performance summaries, e.g., sensitivity 
(true-positive rate) or specificity (true-negative rate). The performance summaries and 
metrics of different prioritization methods can then be compared, e.g., to identify the 
method with the smallest type-2 error (pathogenic variants are incorrectly classified as 
benign variants) or to identify the optimal cutoffs for the methods.

In our pipeline, the expected classes are given as labels in the evaluation data and thus 
cannot be compared directly with the numerical scores from the annotated variant data. 
Therefore, we apply the following label encoding to the expected classes: benign vari-
ants are encoded with 0 and pathogenic ones with 1. The calculated scores are inter-
preted using the cutoffs for pathogenicity. Scores smaller than the cutoff are encoded as 
0 and those larger than the cutoff as 1. The cutoff for each method is part of the plugin’s 
manifest. Also, the user can vary cutoffs to analyze the impact of different cutoffs on 
the method’s performance, e.g., by ROC curves. The calculated summaries and metrics 
and the information from the plugin manifest, are passed to the user as performance 
reports. The plugin information serves as documentation on which basis the summary 
was calculated.
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Currently, we support calculating sensitivity, accuracy, precision, recall, negative pre-
dictive value, specificity, concordance, Matthews correlation coefficient, and the area 
under ROC curves as metrics for the variant prioritization methods. Further, we also 
support calculating confusion matrices, ROC curves, and precision-recall curves as per-
formance summaries. However, the set of metrics can be extended easily.

Results
In the following, we demonstrate the functionality of our test bench by comparing the 
performance of three prioritization methods. The code and data used for the case stud-
ies is available under https:// doi. org/ 10. 5281/ zenodo. 51671 17.

Case study 1: comparing CADD, fathmm‑MKL (coding), and fathmm‑MKL (non‑coding)

CADD and fathmm-MKL are widely used for prioritizing variants. Fathmm-MKL sup-
ports the calculation of two scores, i.e., for coding and non-coding regions.

Each method is integrated as a Docker-based plugin in our pipeline. We use the first 
500 benign and 500 pathogenic SNPs from ClinVar (release date: 2021-02-13) for the 
GRCh37 reference genome as the evaluation input data. An overview of the Python 
script using VPMBench, plotting the summaries, and reporting the metrics is shown in 
Listing 3.

The Python script starts with specifying the plugin selection as a boolean function 
returning True so that all plugins are executed. Next, the file path for the evaluation 
input data is given, followed by the summaries and metrics that should be calculated 
(Line 8–11). After this, input data are automatically transformed, plugins selected, the 

https://doi.org/10.5281/zenodo.5167117
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variant data are annotated with the scores, and summaries and metrics are calculated 
(Line 14). Finally, we plot the summaries (Line 19–20) and report the metrics (Line 21). 
The resulting plots are shown in Fig. 2 and the reported metrics are shown in Table 2.

The confusion matrices in Fig. 2 show that the CADD score performs better than the 
fathmm-MKL scores since 935 of the 1000 variants are correctly classified while also 
minimizing the type-2 error: only 13 pathogenic variants are incorrectly classified as 
benign. In contrast, only 850 variants would be correctly classified based on the fathmm-
MKL coding score and 776 variants based on the fathmm-MKL non-codings score. 
Also, the coding score has the highest type-2 error as 46 pathogenic variants would be 
classified as benign. Another approach to summarize the performance is to use ROC 
curves, where the false-positive rate (1-specificity) and true-positive rate (sensitivity) of 
the methods are plotted against each other for various cutoffs [32, 33]. In the resulting 
plot, the curves of the methods with a high discriminate capacity are closer to the top 

Fig. 2 Plots of the confusion matrices and ROC curves for fathmm-MKL (non-coding) and fathmm-MKL 
(coding), and CADD scores

Table 2 The specificity, sensitivity and AUROC reported for the fathmm-MKL (non-coding) and 
fathmm-MKL (coding), and CADD scores

Bold indicates best performance

Method Sensitivity Specificity AUROC

fathmm-MKL (non-coding) 0.612 0.940 0.879566

fathmm-MKL (coding) 0.792 0.908 0.928486

CADD 0.892 0.974 0.982094
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left of the graph, as a good classifier achieves a high true-positive rate at a low false-
positive rate. The ROC curves in Fig. 2 show that CADD has the highest discriminate 
capacity among the prioritization methods. The same conclusion can be drawn by com-
paring the area under the ROC curves (AUROC) of the different prioritization methods 
(see Table 2). By comparing sensitivity and specificity of the methods as given in Table 2, 
measuring how effectively pathogenic and benign variants can be classified, we see that 
CADD performs better than both fathmm-MKL methods on our evaluation data. Fur-
ther, we see that the specificity of the fathmm-MKL non-coding score is higher than 
for the coding score of the same method, but the sensitivity is lower for the non-cod-
ing score than for the coding score. A subsequent analysis using additional information 
about the variants might allow correlating these observations with specific attributes of 
the misclassified variants, e.g., as done in [34] for types of amino acid substitution.

Case study 2: comparing the concordance of CADD, fathmm‑MKL (coding), 

and fathmm‑MKL (non‑coding) for annual ClinVar releases

When looking at the publication dates of these methods, we see that the current version 
of CADD was trained in 2020 and fathmm-MKL in 2014. From this, one might ask how 
the performance of these methods change over time.

To illustrate how VPMBench   can answer this question, we first downloaded the 
GRCh37 ClinVar releases for 2012 to 2021 and filtered for SNPs classified as benign or 
pathogenic. Second, VPMBench   was used to measure the concordance, i.e., the num-
ber of variants correctly classified as benign or pathogenic, for each method and filtered 
ClinVar release. Next, we calculated the relative concordance, i.e., the percentage of 
correctly classified variants out of the total number of variants in the respective Clin-
Var release. Finally, we aggregated the results (see Table 3). A graphical overview of the 
results is shown in Fig. 3.

In the results, we can make the following observations: (1) the relative concordance 
decreases overtime for all methods, and (2) CADD always has a higher relative concord-
ance than the fathmm-MKL methods.

 To explain these observations, we must consider that the number of SNPs classi-
fied as benign or pathogenic in ClinVar has increased thirteenfold from 2012 to 2021. 

Fig. 3 Relative concordance of CADD, fathmm-MKL (coding), and fathmm-MKL (non-coding) for annual 
ClinVar releases
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Each ClinVar release provides more data than the previous one and, thus, the measured 
performance more and more approximates the “actual” performance of the prioritiza-
tion methods determined by the annotations, i.e., features and the machine-learning 
models used during their development process. The features and the machine-learning 
models used are also explaining the performance difference of these methods. CADD 
uses a logic-regression model, whereas fathmm-MKL uses a support vector machine 
model. Thus, the performance difference can be partially explained due to the capability 
of these methods to classify the variants based on the annotations used in the training 
procedure. When comparing the number of different features used to train the machine-
learning models, we find that CADD was trained on ≈ 100 features with ≈ 17× 10

6 var-
iants in 2020. In contrast, fathmm-MKL methods were trained on ≈ 750 features with 
≈ 8000–21,000 variants in 2013. The performance of machine-learning models is highly 
affected by the so-called curse of dimensionality according to which a large amount of 
training data is necessary to train a machine-learning model on large feature spaces 
[35]. Thus, we suspect that insufficient training data was used to train the fathmm-MKL 
models to achieve comparable performance with CADD. Finally, we notice that an unbi-
ased evaluation of these methods would also require removing the variants used to train 
the machine-learning models. Unfortunately, the original training data of CADD and 
fathmm-MKL is not available.

In general, these results show that it makes sense to check state-of-the-art prioritiza-
tion mechanisms against the latest clinical data regularly. VPMBench  can automate this 
procedure.

Discussion
Next, we describe how VPMBench  can support input formats other than VCF and CSV 
and discuss related approaches.

Supporting other evaluation data input formats

In our pipeline, we convert the variant information into the expected input formats for 
prioritization methods, invoke them and compare their results with the expected clas-
sifications of the variants to calculate performance summaries and performance metrics. 

Table 3 The number of variants and measured concordance of the fathmm-MKL (non-coding), 
fathmm-MKL (coding), and CADD scores for the different ClinVar releases

Year #Variants fathmm‑MKL (non‑
coding)

fathmm‑MKL (coding) CADD

2012 10,295 9,235 (89.7%) 9,099 (88.4%) 9,651 (93.7%)

2013 10,484 9,579 (91.4%) 9,402 (89.7%) 9,978 (95.2%)

2014 14,960 12,288 (82.1%) 12,723 (84.2%) 13,716 (91.7%)

2015 18,725 14,981 (80.0%) 15,762 (84.2%) 17,159 (91.6%)

2016 24,449 19,188 (78.5%) 20,416 (83.5%) 22,183 (90.7%)

2017 31,726 25,910 (81.7%) 27,263 (85.9%) 29,044 (91.5%)

2018 56,115 44,351 (79.0%) 47,414 (84.5%) 51,650 (92.0%)

2019 63,354 49,907 (78.8%) 53,362 (84.2%) 58,297 (92.0%)

2020 111,289 76,754 (69.0%) 87,302 (78.4%) 98,160 (88.2%)

2021 134,384 93,879 (69.9%) 106,179 (79.0%) 118,734 (88.4%)
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Thus, we rely on evaluation data input formats, e.g., VCF or CSV, that are able to store 
the variant information (CHROM, POS, . . . ) along with their expected classifications 
(CLASS).

Formats such as SPDI [36], VRS [37] or HGVS [38] are designed to only represent the 
variant information.

To generate the required input files for our pipeline, the user can use existing tools, 
such as bcftools [39] or VCFtools [40], to convert the variant information into a CSV- 
or VCF file. The resulting variants in these files then have to be annotated with their 
expected classification using information from variant-disease databases such as Clin-
Var. This step can also be supported by using annotation pipelines such as ANNOVAR 
[41].

Related work

Similar procedures, where presumably several scripts are combined to transform the 
input, to invoke different methods, and to calculate the performance summaries and 
metrics, have been repeated many times, e.g., for evaluating a new variant prioritization 
method [12, 17, 20] or investigating the performance of methods for a specific type of 
variant [21, 22, 34] or disease [42, 43]. In contrast to these “ad-hoc implementations”, our 
test bench provides a structured pipeline automating these steps while allowing to inte-
grate methods via plugins.

For annotating the variants with scores, alternatives to our plugin-based approach 
exist in the form of pre-computed databases, dedicated web services provided by authors 
to test their methods, and variant annotation pipelines.

Databases, e.g, dbNSFP [28], focus typically on a specific type of variation, e.g., non-
synonymous single-nucleotide variants, they are not applicable for other types of varia-
tions [41], e.g, INDELs. Thus they are not suitable for a performance analysis covering a 
range of variation types.

The use of web services [44–46] introduces additional load and reliability problems, 
as it relies on an externally managed service while implicitly assuming that services are 
available when needed, that they do not change communication interfaces or versions, 
and that they can handle the required amount of evaluation input data.

One could also use variant annotation pipelines, such as ANNOVAR [41] or the 
Ensembl Variant Effect Predictor [47], allowing to annotate variants with a variety of 
information including, gene-based annotations, region-based annotation, and prioritiza-
tion scores. These approaches share architectural similarities with our test bench as they 
support annotating variant data from different input formats and including new annota-
tions sources as pre-computed databases [41] or plugins [47]. However, they aim at pro-
viding a one-stop source for annotating variants as part of a sequencing pipeline and at 
supporting a biologist in interpreting the variants [47] or analyzing population samples 
[48]. In contrast, our pipeline focuses on facilitating and automating the evaluation of 
prioritization methods.
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Conclusions
Here, we presented VPMBench, a test bench automating the evaluation of variant pri-
oritization methods. The test bench is implemented as a data pipeline with a plugin 
system. Manifest files, in which meta information and the entry points are specified, 
allow a flexible integration of additional prioritization methods. The Manifest files 
are interpreted by VPMBench to convert the evaluation input data into the expected 
format for the methods, to invoke the methods, to read the methods’ output, and 
to interpret the scores for calculating performance summaries and metrics for each 
method. Despite focusing on the evaluation of prioritization methods trying to clas-
sify variants as benign/pathogenic, VPMBench also provides prototypical support 
for non-binary methods classifying according to the ACMG guidelines [49, 50] or 
the ClinVar database [13] (see Documentation). By this, VPMBench supports perfor-
mance studies comparing the performance of various methods as well as the develop-
ment of new prioritization methods.

For future development, we plan to include further state-of-the-art variant prioriti-
zation methods into our test bench for comparison. In particular, we aim at ensem-
ble-based methods [51], which combine multiple scores in order to produce superior 
classificators [52, 53]. Additionally, we aim to improve our testbench by extending the 
extractor interface so that meta-information about the variants, e.g., whether a vari-
ant is coding/non-coding, can be integrated as variant attributes as part of the evalu-
ation data. This information will then be used to implement additional features, e.g., 
a warning mechanism that warns the user when non-coding prioritization methods 
tries are used to calculate scores for coding variants. Moreover, we want to include an 
automatic liftover for variants. Recent studies [54, 55] suggest that liftover can pro-
duce accurate results. Therefore, we want to investigate how an automatic liftover, 
as it is also done in variant annotation pipelines, affects the performance of variant 
prioritization methods.
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