
VPMBench: a test bench for variant
prioritization methods
Andreas Ruscheinski1* , Anna Lena Reimler1, Roland Ewald2 and Adelinde M. Uhrmacher1

Background
Recent improvements in price and scalability of next-generation sequencing (NGS) make
whole-exome and whole-genome sequencing (WES, WGS) feasible in clinical practice
(e.g. [1, 2]). However, diagnosing WES and WGS cases is challenging. In a typical WES
case, 25,000–75,000 of a patient’s genetic variants have to be narrowed down to a hand-
ful of relevant variants (e.g. [3, 4]; WGS increases these numbers ca. 30-fold). Even after
considering population allele frequency [5], gene-phenotype associations [6], or other
variant annotations, dozens of potentially relevant variants may be found in a case. A
clinician has to manually review these variants in a time-consuming and cumbersome
process [7]. Variant prioritization methods are being developed to allow the clinican to
focus on those variants that are likely disease-causing [8].

Abstract

Background: Clinical diagnostics of whole-exome and whole-genome sequencing
data requires geneticists to consider thousands of genetic variants for each patient.
Various variant prioritization methods have been developed over the last years to
aid clinicians in identifying variants that are likely disease-causing. Each time a new
method is developed, its effectiveness must be evaluated and compared to other
approaches based on the most recently available evaluation data. Doing so in an unbi-
ased, systematic, and replicable manner requires significant effort.

Results: The open-source test bench “VPMBench” automates the evaluation of variant
prioritization methods. VPMBench introduces a standardized interface for prioritization
methods and provides a plugin system that makes it easy to evaluate new methods. It
supports different input data formats and custom output data preparation. VPMBench
exploits declaratively specified information about the methods, e.g., the variants sup-
ported by the methods. Plugins may also be provided in a technology-agnostic man-
ner via containerization.

Conclusions: VPMBench significantly simplifies the evaluation of both custom and
published variant prioritization methods. As we expect variant prioritization methods
to become ever more critical with the advent of whole-genome sequencing in clinical
diagnostics, such tool support is crucial to facilitate methodological research.

Keywords: Bioinformatics, Software, Test bench, Variant prioritization, Evaluation

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Ruscheinski et al. BMC Bioinformatics (2021) 22:543
https://doi.org/10.1186/s12859-021-04458-0 BMC Bioinformatics

*Correspondence:
andreas.ruscheinski@uni-
rostock.de
1 Modeling and Simulation
Group, Institute for Visual
and Analytic Computing,
University of Rostock,
Albert-Einstein-Straße 22,
18051 Rostock, Germany
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-8821-9047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04458-0&domain=pdf

Page 2 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Variant prioritization methods are calculating numerical scores predicting the func-
tional impact of the patient’s variants [9]. For this, the methods make assumptions about
how the degree of pathogenicity of a variant can be recognized [8]. For example, vari-
ants in highly conserved DNA regions are likely to be more damaging than variants in
less conserved regions, or common variants in a large population are likely to be benign.
The pathogenicity of a variant is typically expressed as a score. It is calculated by algo-
rithms like ontology propagation [10], decision trees [11], or Hidden Markov models
[12], which in turn have been trained or calibrated with data from public databases (e.g.,
ClinVar [13], HPO [14]). The scores have to be interpreted using cutoffs for pathogenic-
ity specified by the authors of the respective method to classify the variants as benign or
pathogenic [9]. The prioritization methods further differ in terms of their required input
format for the variants and their software stack, e.g., fathmm-MKL [15] requires Python
version 2.7 and uses tabix [16] whereas CADD [17] relies on bioconda [18] and
snakemake [19] to orchestrate a combination of various scripts to retrieve the scores.

Each time a new method is developed, whether based on updated or new databases or
by using a different algorithm, its effectiveness in identifying pathogenic variants needs
to be evaluated based on different data sources, and, ideally, also compared to already
existing methods [12, 17, 20]. Identifying the most suitable method for disease-specific
gene panels [21, 22] or specific variation types, e.g., single nucleotide polymorphisms
(SNP) or short insertions or deletions (INDELS) [23], also requires an evaluation and
comparison of these methods.

A thorough evaluation of variant prioritization methods takes significant effort
because

1. the evaluation input data, consisting of the variants and their expected classification,
needs to be converted into valid input for each method (e.g., VCF- or CSV-files),

2. the different software stacks of the methods have to be invoked individually, and
3. their outputs have to be converted into a common format, which can serve as the

basis for comparison (e.g., by calculating sensitivity and specificity or plot receiver
operator characteristic (ROC) curves).

These steps need to be repeated for each performance evaluation study.
To facilitate the evaluation of variant prioritization algorithms, we propose VPM-

Bench. VPMBench is a test bench that allows us to compare the performance of pri-
oritization methods with little manual intervention by automating the steps outlined
above. By this, the user can focus on compiling suitable evaluation datasets, developing a
new variant prioritization method, and interpreting the results.

Implementation
The overall architecture of our test bench assembles a data pipeline [24] in which the
variant prioritization methods are integrated as plugins.

To use our pipeline, the user provides the evaluation input data and specifies plugins,
performance summaries, and metrics of interest. Our pipeline then parses the evalua-
tion input data, loads and invokes the plugins, collects their output, and calculates the
summaries and metrics.

Page 3 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

The results are passed back as a performance report to the user for further process-
ing, e.g., generating visualizations or analyzing the results. An overview of the pipeline is
shown in Fig. 1.

We implemented our VPMBench test bench using Python [25]. Thus, VPMBench
test bench can be integrated into existing Python projects using the provided API. The
source code can be found at https:// github. com/ IDEA- PRIO/ VPMBe nch. A thorough
documentation is available at https:// vpmbe nch. readt hedocs. io/ en/ latest/.

In the following, we give a short overview of how the different steps of our pipeline
and the plugin system have been implemented.

Input processing

In the first step, we transform the evaluation input data that contains the variant data and
their expected classifications into an internal representation described in Table 1. In the
resulting evaluation data, we assign each entry a unique numerical identifier (UID), allow-
ing us to reference the individual entries in our pipeline. Currently, our test bench provides
generic extractors for arbitrary VCF- and CSV-based input formats. Using these extractors,
we implemented extractors for two publicly available variant-disease databases, i.e., Clin-
Var [13] and the VariSNP benchmark database suite [26]. Finally, we validate the evaluation
data according to the constraints shown in Table 1. If the validation of the evaluation data
fails, we report an error to the user requiring to revise the evaluation input data. All variant

Fig. 1 Overview of the VPMBench architecture

Table 1 Format of the evaluation data

Attribute Name Description Values

Unique Identifier UID The unique numerical identifier of the variant N
≥0

Reference Genome RG The reference genome used to call the variant String

Chromosome CHROM The chromosome in which the variant is found {1, . . . , 22, X, Y, M}

Position POS The 1-based position of the variant within the chromo-
some

N
≥1

Reference REF The reference bases {A, C, G, T}∗

Alternative ALT The alternative bases {A, C, G, T}∗

Variation type TYPE The variation type of the variant {SNP, INDEL}

Classification CLASS The expected classification of the variant {benign, pathogeneic}

https://github.com/IDEA-PRIO/VPMBench
https://vpmbench.readthedocs.io/en/latest/

Page 4 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

attributes in the evaluation data except the classification, i.e., UID, RG, CHROM, POS, REF,
ALT, are forwarded as variant data to the methods.

Integrating variant prioritization methods

Variant prioritization methods are integrated as plugins, allowing to include new methods
without changing the pipeline code. Each plugin consists of a manifest file and integration
code for a method’s custom processing logic.

The manifest contains a declarative specification of meta-information about the method,
i.e., its name, version, supported variation types, cutoff, supported reference genome, and
the versions of associated databases and datasets. It also specifies an entry point to the pro-
cessing logic for our pipeline. The manifest is used to ensure that the evaluation is limited to
variation types supported by the method so that VPMBench only calls it with valid data and
can thus generate meaningful evaluation reports.

The custom processing logic is invoked as part of our pipeline to calculate a variant’s
score. To ensure compatibility of the logic with the rest of our pipeline, we define an inter-
face that accepts variant data as input and returns a tuple (UID,score) for each variant.

The processing logic can be implemented from scratch using Python or be reused from
Docker images. When using Python, VPMBench loads and executes the Python file speci-
fied as the entry point in the manifest. To reuse a Docker image the user specifies

• the name of the image,
• format and file paths of input and output files, and
• optional bindings to local files separating the processing logic in the image from

required databases or indices, e.g, calculated by tabix [16], and
• a command which is executed to invoke the method in the Docker container (see List-

ing 1).

Our test bench uses this information to write the variant data in the expected input format
of the method, to mount the input/output files and bindings, to run the Docker container,
and to parse the output file for returning a set of UID and score pairs.

The key difference between the two approaches is the environment in which the method
is executed. The Python code is executed in the same environment as the pipeline and thus
allows to access methods under local development. In contrast, Docker containers provide
a dedicated virtualized environment preventing any conflicts with locally installed software,
e.g., conflicting Python versions [27], and also allow implementing the logic in any pro-
gramming language as long the implementation adheres to the interface described above.
Currently, we provide a Docker-based plugin for CADD [17] and Python-based plugins for
the non-coding and coding scores from fathmm-MKL [15] and 30 scores from the dbNSFP
4.1a [28] (without fathmm-MKL and CADD).

Page 5 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Invoking the variant prioritization methods

To invoke the variant prioritization methods, we rely on our plugin-based system which
automatically discovers available plugins based on the manifest files and filters the
plugins according to the plugin selection. The plugin selection is specified as a boolean
function. This function has to return True when the plugin shall be invoked (see Listing
2).

Page 6 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

1 # Run all plugins
2 lambda plugin: True
3

4 # Run only fathmm -MKL (non -coding)
5 lambda plugin: plugin.name == "fathmm -MKL (non -coding)"
6

7 # Run all variant priorization methods supporting INDELs
8 lambda plugin: "INDEL" in plugin.supported_variants
9

10 # Run all plugins not trained with HGMD data
11 from vpmbench.predicates import *
12 lambda plugin: not was_trained_with(plugin ,"HGMD")
13

Listing 2: Examples for the plugin selection.

Before running the custom processing logic of the plugins, we check the selected
plugins for compatibility with the variant data by comparing the supported variation
types and reference genome from the manifest with the corresponding information from
the data. If this check fails, we report an error to the user requiring to revise the evalu-
ation input data. For example by liftover the genomic coordinates of the variants to the
supported reference genome or remove invalid variation types. Next, we interpret the
specified entry points from the plugins and run the custom processing logic of the meth-
ods in parallel. The outputs are collected and validated to ensure that each UID got a
numerical score assigned, and are then used to annotate the variants with the scores.

Calculating performance summaries and performance metrics

Variant prioritization methods calculate scores. They are interpreted using the cutoff of
the respective method to classify the variants as benign/neutral or pathogenic/deleteri-
ous. Thus, we can assess the performance of variant prioritization mechanisms similar
to binary classifiers [29–31]. We first calculate performance summaries, e.g., confu-
sion matrices or receiver operator characteristic (ROC) curves [32, 33], by comparing
the predicted and expected classification of variants. We calculate performance met-
rics quantifying the performance based on the performance summaries, e.g., sensitivity
(true-positive rate) or specificity (true-negative rate). The performance summaries and
metrics of different prioritization methods can then be compared, e.g., to identify the
method with the smallest type-2 error (pathogenic variants are incorrectly classified as
benign variants) or to identify the optimal cutoffs for the methods.

In our pipeline, the expected classes are given as labels in the evaluation data and thus
cannot be compared directly with the numerical scores from the annotated variant data.
Therefore, we apply the following label encoding to the expected classes: benign vari-
ants are encoded with 0 and pathogenic ones with 1. The calculated scores are inter-
preted using the cutoffs for pathogenicity. Scores smaller than the cutoff are encoded as
0 and those larger than the cutoff as 1. The cutoff for each method is part of the plugin’s
manifest. Also, the user can vary cutoffs to analyze the impact of different cutoffs on
the method’s performance, e.g., by ROC curves. The calculated summaries and metrics
and the information from the plugin manifest, are passed to the user as performance
reports. The plugin information serves as documentation on which basis the summary
was calculated.

Page 7 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Currently, we support calculating sensitivity, accuracy, precision, recall, negative pre-
dictive value, specificity, concordance, Matthews correlation coefficient, and the area
under ROC curves as metrics for the variant prioritization methods. Further, we also
support calculating confusion matrices, ROC curves, and precision-recall curves as per-
formance summaries. However, the set of metrics can be extended easily.

Results
In the following, we demonstrate the functionality of our test bench by comparing the
performance of three prioritization methods. The code and data used for the case stud-
ies is available under https:// doi. org/ 10. 5281/ zenodo. 51671 17.

Case study 1: comparing CADD, fathmm‑MKL (coding), and fathmm‑MKL (non‑coding)

CADD and fathmm-MKL are widely used for prioritizing variants. Fathmm-MKL sup-
ports the calculation of two scores, i.e., for coding and non-coding regions.

Each method is integrated as a Docker-based plugin in our pipeline. We use the first
500 benign and 500 pathogenic SNPs from ClinVar (release date: 2021-02-13) for the
GRCh37 reference genome as the evaluation input data. An overview of the Python
script using VPMBench, plotting the summaries, and reporting the metrics is shown in
Listing 3.

The Python script starts with specifying the plugin selection as a boolean function
returning True so that all plugins are executed. Next, the file path for the evaluation
input data is given, followed by the summaries and metrics that should be calculated
(Line 8–11). After this, input data are automatically transformed, plugins selected, the

https://doi.org/10.5281/zenodo.5167117

Page 8 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

variant data are annotated with the scores, and summaries and metrics are calculated
(Line 14). Finally, we plot the summaries (Line 19–20) and report the metrics (Line 21).
The resulting plots are shown in Fig. 2 and the reported metrics are shown in Table 2.

The confusion matrices in Fig. 2 show that the CADD score performs better than the
fathmm-MKL scores since 935 of the 1000 variants are correctly classified while also
minimizing the type-2 error: only 13 pathogenic variants are incorrectly classified as
benign. In contrast, only 850 variants would be correctly classified based on the fathmm-
MKL coding score and 776 variants based on the fathmm-MKL non-codings score.
Also, the coding score has the highest type-2 error as 46 pathogenic variants would be
classified as benign. Another approach to summarize the performance is to use ROC
curves, where the false-positive rate (1-specificity) and true-positive rate (sensitivity) of
the methods are plotted against each other for various cutoffs [32, 33]. In the resulting
plot, the curves of the methods with a high discriminate capacity are closer to the top

Fig. 2 Plots of the confusion matrices and ROC curves for fathmm-MKL (non-coding) and fathmm-MKL
(coding), and CADD scores

Table 2 The specificity, sensitivity and AUROC reported for the fathmm-MKL (non-coding) and
fathmm-MKL (coding), and CADD scores

Bold indicates best performance

Method Sensitivity Specificity AUROC

fathmm-MKL (non-coding) 0.612 0.940 0.879566

fathmm-MKL (coding) 0.792 0.908 0.928486

CADD 0.892 0.974 0.982094

Page 9 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

left of the graph, as a good classifier achieves a high true-positive rate at a low false-
positive rate. The ROC curves in Fig. 2 show that CADD has the highest discriminate
capacity among the prioritization methods. The same conclusion can be drawn by com-
paring the area under the ROC curves (AUROC) of the different prioritization methods
(see Table 2). By comparing sensitivity and specificity of the methods as given in Table 2,
measuring how effectively pathogenic and benign variants can be classified, we see that
CADD performs better than both fathmm-MKL methods on our evaluation data. Fur-
ther, we see that the specificity of the fathmm-MKL non-coding score is higher than
for the coding score of the same method, but the sensitivity is lower for the non-cod-
ing score than for the coding score. A subsequent analysis using additional information
about the variants might allow correlating these observations with specific attributes of
the misclassified variants, e.g., as done in [34] for types of amino acid substitution.

Case study 2: comparing the concordance of CADD, fathmm‑MKL (coding),

and fathmm‑MKL (non‑coding) for annual ClinVar releases

When looking at the publication dates of these methods, we see that the current version
of CADD was trained in 2020 and fathmm-MKL in 2014. From this, one might ask how
the performance of these methods change over time.

To illustrate how VPMBench can answer this question, we first downloaded the
GRCh37 ClinVar releases for 2012 to 2021 and filtered for SNPs classified as benign or
pathogenic. Second, VPMBench was used to measure the concordance, i.e., the num-
ber of variants correctly classified as benign or pathogenic, for each method and filtered
ClinVar release. Next, we calculated the relative concordance, i.e., the percentage of
correctly classified variants out of the total number of variants in the respective Clin-
Var release. Finally, we aggregated the results (see Table 3). A graphical overview of the
results is shown in Fig. 3.

In the results, we can make the following observations: (1) the relative concordance
decreases overtime for all methods, and (2) CADD always has a higher relative concord-
ance than the fathmm-MKL methods.

 To explain these observations, we must consider that the number of SNPs classi-
fied as benign or pathogenic in ClinVar has increased thirteenfold from 2012 to 2021.

Fig. 3 Relative concordance of CADD, fathmm-MKL (coding), and fathmm-MKL (non-coding) for annual
ClinVar releases

Page 10 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Each ClinVar release provides more data than the previous one and, thus, the measured
performance more and more approximates the “actual” performance of the prioritiza-
tion methods determined by the annotations, i.e., features and the machine-learning
models used during their development process. The features and the machine-learning
models used are also explaining the performance difference of these methods. CADD
uses a logic-regression model, whereas fathmm-MKL uses a support vector machine
model. Thus, the performance difference can be partially explained due to the capability
of these methods to classify the variants based on the annotations used in the training
procedure. When comparing the number of different features used to train the machine-
learning models, we find that CADD was trained on ≈ 100 features with ≈ 17× 10

6 var-
iants in 2020. In contrast, fathmm-MKL methods were trained on ≈ 750 features with
≈ 8000–21,000 variants in 2013. The performance of machine-learning models is highly
affected by the so-called curse of dimensionality according to which a large amount of
training data is necessary to train a machine-learning model on large feature spaces
[35]. Thus, we suspect that insufficient training data was used to train the fathmm-MKL
models to achieve comparable performance with CADD. Finally, we notice that an unbi-
ased evaluation of these methods would also require removing the variants used to train
the machine-learning models. Unfortunately, the original training data of CADD and
fathmm-MKL is not available.

In general, these results show that it makes sense to check state-of-the-art prioritiza-
tion mechanisms against the latest clinical data regularly. VPMBench can automate this
procedure.

Discussion
Next, we describe how VPMBench can support input formats other than VCF and CSV
and discuss related approaches.

Supporting other evaluation data input formats

In our pipeline, we convert the variant information into the expected input formats for
prioritization methods, invoke them and compare their results with the expected clas-
sifications of the variants to calculate performance summaries and performance metrics.

Table 3 The number of variants and measured concordance of the fathmm-MKL (non-coding),
fathmm-MKL (coding), and CADD scores for the different ClinVar releases

Year #Variants fathmm‑MKL (non‑
coding)

fathmm‑MKL (coding) CADD

2012 10,295 9,235 (89.7%) 9,099 (88.4%) 9,651 (93.7%)

2013 10,484 9,579 (91.4%) 9,402 (89.7%) 9,978 (95.2%)

2014 14,960 12,288 (82.1%) 12,723 (84.2%) 13,716 (91.7%)

2015 18,725 14,981 (80.0%) 15,762 (84.2%) 17,159 (91.6%)

2016 24,449 19,188 (78.5%) 20,416 (83.5%) 22,183 (90.7%)

2017 31,726 25,910 (81.7%) 27,263 (85.9%) 29,044 (91.5%)

2018 56,115 44,351 (79.0%) 47,414 (84.5%) 51,650 (92.0%)

2019 63,354 49,907 (78.8%) 53,362 (84.2%) 58,297 (92.0%)

2020 111,289 76,754 (69.0%) 87,302 (78.4%) 98,160 (88.2%)

2021 134,384 93,879 (69.9%) 106,179 (79.0%) 118,734 (88.4%)

Page 11 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Thus, we rely on evaluation data input formats, e.g., VCF or CSV, that are able to store
the variant information (CHROM, POS, . . .) along with their expected classifications
(CLASS).

Formats such as SPDI [36], VRS [37] or HGVS [38] are designed to only represent the
variant information.

To generate the required input files for our pipeline, the user can use existing tools,
such as bcftools [39] or VCFtools [40], to convert the variant information into a CSV-
or VCF file. The resulting variants in these files then have to be annotated with their
expected classification using information from variant-disease databases such as Clin-
Var. This step can also be supported by using annotation pipelines such as ANNOVAR
[41].

Related work

Similar procedures, where presumably several scripts are combined to transform the
input, to invoke different methods, and to calculate the performance summaries and
metrics, have been repeated many times, e.g., for evaluating a new variant prioritization
method [12, 17, 20] or investigating the performance of methods for a specific type of
variant [21, 22, 34] or disease [42, 43]. In contrast to these “ad-hoc implementations”, our
test bench provides a structured pipeline automating these steps while allowing to inte-
grate methods via plugins.

For annotating the variants with scores, alternatives to our plugin-based approach
exist in the form of pre-computed databases, dedicated web services provided by authors
to test their methods, and variant annotation pipelines.

Databases, e.g, dbNSFP [28], focus typically on a specific type of variation, e.g., non-
synonymous single-nucleotide variants, they are not applicable for other types of varia-
tions [41], e.g, INDELs. Thus they are not suitable for a performance analysis covering a
range of variation types.

The use of web services [44–46] introduces additional load and reliability problems,
as it relies on an externally managed service while implicitly assuming that services are
available when needed, that they do not change communication interfaces or versions,
and that they can handle the required amount of evaluation input data.

One could also use variant annotation pipelines, such as ANNOVAR [41] or the
Ensembl Variant Effect Predictor [47], allowing to annotate variants with a variety of
information including, gene-based annotations, region-based annotation, and prioritiza-
tion scores. These approaches share architectural similarities with our test bench as they
support annotating variant data from different input formats and including new annota-
tions sources as pre-computed databases [41] or plugins [47]. However, they aim at pro-
viding a one-stop source for annotating variants as part of a sequencing pipeline and at
supporting a biologist in interpreting the variants [47] or analyzing population samples
[48]. In contrast, our pipeline focuses on facilitating and automating the evaluation of
prioritization methods.

Page 12 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Conclusions
Here, we presented VPMBench, a test bench automating the evaluation of variant pri-
oritization methods. The test bench is implemented as a data pipeline with a plugin
system. Manifest files, in which meta information and the entry points are specified,
allow a flexible integration of additional prioritization methods. The Manifest files
are interpreted by VPMBench to convert the evaluation input data into the expected
format for the methods, to invoke the methods, to read the methods’ output, and
to interpret the scores for calculating performance summaries and metrics for each
method. Despite focusing on the evaluation of prioritization methods trying to clas-
sify variants as benign/pathogenic, VPMBench also provides prototypical support
for non-binary methods classifying according to the ACMG guidelines [49, 50] or
the ClinVar database [13] (see Documentation). By this, VPMBench supports perfor-
mance studies comparing the performance of various methods as well as the develop-
ment of new prioritization methods.

For future development, we plan to include further state-of-the-art variant prioriti-
zation methods into our test bench for comparison. In particular, we aim at ensem-
ble-based methods [51], which combine multiple scores in order to produce superior
classificators [52, 53]. Additionally, we aim to improve our testbench by extending the
extractor interface so that meta-information about the variants, e.g., whether a vari-
ant is coding/non-coding, can be integrated as variant attributes as part of the evalu-
ation data. This information will then be used to implement additional features, e.g.,
a warning mechanism that warns the user when non-coding prioritization methods
tries are used to calculate scores for coding variants. Moreover, we want to include an
automatic liftover for variants. Recent studies [54, 55] suggest that liftover can pro-
duce accurate results. Therefore, we want to investigate how an automatic liftover,
as it is also done in variant annotation pipelines, affects the performance of variant
prioritization methods.

Availability and requirements
Project name: VPMBench

Project home page: https:// github. com/ IDEA- PRIO/ VPMBe nch
Operating system(s): Linux
Programming language: Python
Other requirements: Docker, Python libraries (Pandas, Pandera, Scikit-learn,Docker-

SDK, Matplotlib, PyYAML, Numpy, PyVCF)
License: MIT
Any restrictions to use by non-academics: none

Abbreviations
NGS: Next-generation sequencing; WGS: Whole-genome sequencing; WES: Whole-exome sequencing; SNP: Single
nucleotide polymorphism; INDELS: Insertions or deletions; ROC: Receiver operator characteristic.

Acknowledgments
Not applicable.

Author Contributions
AR designed and implemented the software. AR conducted the first case study. ALR conducted the second case study
and implemented the software. AR, RE, and AMU wrote the manuscript. AMU supervised the project. All authors have
read and approved the manuscript.

https://github.com/IDEA-PRIO/VPMBench

Page 13 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

Funding
Open Access funding enabled and organized by Projekt DEAL. This research was funded by the state of Mecklenburg
Vorpommern, Germany via the European Regional Development Fund (ERDF) of the European Union as part of the
Project ’IDEA-PRIO-U’ (TBI-V-1-354-VBW-122). The funder had no role in software implementation, study design, data col-
lection, and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The Source code is available at GitHub https:// github. com/ IDEA- PRIO/ VPMBe nch. The documentation is available at
https:// vpmbe nch. readt hedocs. io/ en/ latest/. The datasets and code used in the case studies is available at https:// doi.
org/ 10. 5281/ zenodo. 51671 17.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Modeling and Simulation Group, Institute for Visual and Analytic Computing, University of Rostock, Albert-Ein-
stein-Straße 22, 18051 Rostock, Germany. 2 Limbus Medical Technologies GmbH, Lindenstraße 2, 18055 Rostock,
Germany.

Received: 10 March 2021 Accepted: 23 October 2021

References
 1. Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genom Hum Genet. 2016;17:95–115.
 2. King JR, Hammarström L. Newborn screening for primary immunodeficiency diseases: history, current and future

practice. J Clin Immunol. 2018;38(1):56–66. https:// doi. org/ 10. 1007/ s10875- 017- 0455-x.
 3. Negishi Y, Miya F, Hattori A, Mizuno K, Hori I, Ando N, Okamoto N, Kato M, Tsunoda T, Yamasaki M, et al. Truncat-

ing mutation in NFIA causes brain malformation and urinary tract defects. Hum Genome Variation. 2015;2:15007.
https:// doi. org/ 10. 1038/ hgv. 2015.7.

 4. Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.
Nat Rev Genet. 2011;12(9):628–40.

 5. Rim JH, Lee JS, Jung J, Lee JH, Lee S-T, Choi JR, Choi JY, Lee MG, Gee HY. Systematic evaluation of gene variants
linked to hearing loss based on allele frequency threshold and filtering allele frequency. Sci Rep. 2019;9(1):1–9.

 6. Robinson PN, Ravanmehr V, Jacobsen JOB, Danis D, Zhang XA, Carmody LC, Gargano MA, Thaxton CL, Karlebach G,
Reese J, Holtgrewe M, Köhler S, McMurry JA, Haendel MA, Smedley D. Interpretable clinical genomics with a likeli-
hood ratio paradigm. Am J Hum Genet. 2020;107(3):403–17. https:// doi. org/ 10. 1016/j. ajhg. 2020. 06. 021.

 7. Gargis AS, Kalman L, Bick DP, da Silva C, Dimmock DP, Funke BH, Gowrisankar S, Hegde MR, Kulkarni S, Mason
CE, et al. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat Biotechnol.
2015;33(7):689–93. https:// doi. org/ 10. 1038/ nbt. 3237.

 8. Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and mendelian disease. Nat Rev Genet.
2017;18(10):599–612.

 9. Bosio M, Drechsel O, Rahman R, Muyas F, Rabionet R, Bezdan D, Domenech Salgado L, Hor H, Schott J-J, Munell
F, et al. eDiVA-classification and prioritization of pathogenic variants for clinical diagnostics. Hum Mutat.
2019;40(7):865–78.

 10. Singleton MV, Guthery SL, Voelkerding KV, Chen K, Kennedy B, Margraf RL, Durtschi J, Eilbeck K, Reese MG, Jorde LB,
et al. Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single
individuals and small nuclear families. Am J Hum Genet. 2014;94(4):599–610.

 11. do Nascimento PM, Medeiros IG, Falcão RM, Stransky B, de Souza JES. A decision tree to improve identification of
pathogenic mutations in clinical practice. BMC Med Inform Decis Mak. 2020;20(1):1–11.

 12. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR. Predicting the functional,
molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat.
2013;34(1):57–65.

 13. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR. ClinVar: public archive of relation-
ships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(D1):980–5.

 14. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, Danis D, Balagura G, Baynam G,
Brower AM, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49(D1):1207–17. https:// doi. org/
10. 1093/ nar/ gkaa1 043.

 15. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, Gaunt TR, Campbell C. An integrative approach to pre-
dicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 2015;31(10):1536–43.

 16. Li H. Tabix: fast retrieval of sequence features from generic tab-delimited files. Bioinformatics. 2011;27(5):718–9.

https://github.com/IDEA-PRIO/VPMBench
https://vpmbench.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.5167117
https://doi.org/10.5281/zenodo.5167117
https://doi.org/10.1007/s10875-017-0455-x
https://doi.org/10.1038/hgv.2015.7
https://doi.org/10.1016/j.ajhg.2020.06.021
https://doi.org/10.1038/nbt.3237
https://doi.org/10.1093/nar/gkaa1043
https://doi.org/10.1093/nar/gkaa1043

Page 14 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

 17. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

 18. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J. Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat Methods. 2018;15(7):475–6.

 19. Köster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
 20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and

server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
 21. Drubay D, Gautheret D, Michiels S. A benchmark study of scoring methods for non-coding mutations. Bioinformat-

ics. 2018;34(10):1635–41.
 22. Mather CA, Mooney SD, Salipante SJ, Scroggins S, Wu D, Pritchard CC, Shirts BH. CADD score has limited clinical

validity for the identification of pathogenic variants in noncoding regions in a hereditary cancer panel. Genet Med.
2016;18(12):1269–75.

 23. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants. Bioinformatics. 2015;31(13):2202–4. https://
doi. org/ 10. 1093/ bioin forma tics/ btv112.

 24. Vermeulen A, Beged-Dov G, Thompson P. The pipeline design pattern. In: Proceedings of OOPSLA’95 workshop on
design patterns for concurrent, parallel, and distributed object-oriented systems, 1995.

 25. Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9(3):10–20.
 26. Schaafsma GCP, Vihinen M. VariSNP, a benchmark database for variations from dbSNP. Hum Mutat. 2015;36(2):161–6.

https:// doi. org/ 10. 1002/ humu. 22727.
 27. Malloy BA, Power JF. An empirical analysis of the transition from python 2 to python 3. Empir Softw Eng.

2019;24(2):751–78.
 28. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions

and annotations for human nonsynonymous and splice-site snvs. Genome Med. 2020;12(1):1–8.
 29. Hassan MS, Shaalan AA, Dessouky MI, Abdelnaiem AE, ElHefnawi M. Evaluation of computational techniques for

predicting non-synonymous single nucleotide variants pathogenicity. Genomics. 2019;111(4):869–82. https:// doi.
org/ 10. 1016/j. ygeno. 2018. 05. 013.

 30. Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng.
2005;17(3):299–310.

 31. Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manag.
2009;45(4):427–37.

 32. Fawcett T. An introduction to roc analysis. Pattern Recogn Lett. 2006;27(8):861–74.
 33. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5(9):1315–

6. https:// doi. org/ 10. 1097/ JTO. 0b013 e3181 ec173d.
 34. Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense

variants. Hum Mutat. 2011;32(4):358–68. https:// doi. org/ 10. 1002/ humu. 21445.
 35. Altman N, Krzywinski M. The curse (s) of dimensionality. Nat Methods. 2018;15(6):399–400.
 36. Holmes JB, Moyer E, Phan L, Maglott D, Kattman B. Spdi: data model for variants and applications at ncbi. Bioinfor-

matics. 2020;36(6):1902–7.
 37. Wagner AH, Babb L, Alterovitz G, Baudis M, Brush M, Cameron DL, Cline M, Griffith M, Griffith OL, Hunt S, Kreda D,

Lee J, Lopez J, Moyer E, Nelson T, Patel RY, Riehle K, Robinson PN, Rynearson S, Schuilenburg H, Tsukanov K, Walsh
B, Konopko M, Rehm H, Yates AD, Freimuth RR, Hart RK. The ga4gh variation representation specification (vrs): a
computational framework for the precise representation and federated identification of molecular variation. bioRxiv
2021. https:// doi. org/ 10. 1101/ 2021. 01. 15. 426843

 38. den Dunnen JT. Describing sequence variants using hgvs nomenclature. In: Genotyping, pp. 243–251. Springer,
2017.

 39. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al.
Twelve years of samtools and bcftools. Gigascience. 2021;10(2):008.

 40. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al.
The variant call format and vcftools. Bioinformatics. 2011;27(15):2156–8.

 41. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequenc-
ing data. Nucleic Acids Res. 2010;38(16):164.

 42. Walters-Sen LC, Hashimoto S, Thrush DL, Reshmi S, Gastier-Foster JM, Astbury C, Pyatt RE. Variability in pathogenicity
prediction programs: impact on clinical diagnostics. Mol Genet Genom Med. 2015;3(2):99–110. https:// doi. org/ 10.
1002/ mgg3. 116.

 43. Evans P, Wu C, Lindy A, McKnight DA, Lebo M, Sarmady M, Tayoun ANA. Genetic variant pathogenicity prediction
trained using disease-specific clinical sequencing data sets. Genome Res. 2019;29(7):1144–51. https:// doi. org/ 10.
1101/ gr. 240994. 118.

 44. PolyPhen-2 Web Service. http:// genet ics. bwh. harva rd. edu/ pph2/. Accessed: 2021-02-11
 45. FATHMM-MKL Web Service. http:// fathmm. bioco mpute. org. uk/ fathm mMKL. htm. Accessed: 2021-02-11
 46. CADD Web Service. https:// cadd. gs. washi ngton. edu/ score. Accessed: 2021-02-11
 47. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. The ensembl variant effect

predictor. Genome Biol. 2016;17(1):1–14.
 48. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc.

2015;10(10):1556–66.
 49. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and

guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college
of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–23.

 50. Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, Biesecker LG. Modeling the acmg/
amp variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20(9):1054–60.

 51. Rokach L. Ensemble-based classifiers. Artif Intell Rev. 2010;33(1):1–39.

https://doi.org/10.1093/bioinformatics/btv112
https://doi.org/10.1093/bioinformatics/btv112
https://doi.org/10.1002/humu.22727
https://doi.org/10.1016/j.ygeno.2018.05.013
https://doi.org/10.1016/j.ygeno.2018.05.013
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1002/humu.21445
https://doi.org/10.1101/2021.01.15.426843
https://doi.org/10.1002/mgg3.116
https://doi.org/10.1002/mgg3.116
https://doi.org/10.1101/gr.240994.118
https://doi.org/10.1101/gr.240994.118
http://genetics.bwh.harvard.edu/pph2/
http://fathmm.biocompute.org.uk/fathmmMKL.htm
https://cadd.gs.washington.edu/score

Page 15 of 15Ruscheinski et al. BMC Bioinformatics (2021) 22:543

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 52. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D,
et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet.
2016;99(4):877–85.

 53. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X. Comparison and integration of deleteriousness predic-
tion methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125–37.

 54. Luu P-L, Ong P-T, Dinh T-P, Clark SJ. Benchmark study comparing liftover tools for genome conversion of epigenome
sequencing data. NAR Genom Bioinf. 2020;2(3):lqaa054. https:// doi. org/ 10. 1093/ nargab/ lqaa0 54.

 55. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants through-
out the human genome. Nucleic Acids Res. 2019;47(D1):886–94. https:// doi. org/ 10. 1093/ nar/ gky10 16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/nargab/lqaa054
https://doi.org/10.1093/nar/gky1016

	VPMBench: a test bench for variant prioritization methods
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Input processing
	Integrating variant prioritization methods
	Invoking the variant prioritization methods
	Calculating performance summaries and performance metrics

	Results
	Case study 1: comparing CADD, fathmm-MKL (coding), and fathmm-MKL (non-coding)
	Case study 2: comparing the concordance of CADD, fathmm-MKL (coding), and fathmm-MKL (non-coding) for annual ClinVar releases

	Discussion
	Supporting other evaluation data input formats
	Related work

	Conclusions
	Availability and requirements
	Acknowledgments
	References

